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ABSTRACT
This paper proposes a novel framework for cross-domain
traffic scene understanding. Existing learning-based outdoor
wide-area scene interpretation models suffer from requiring
long term data collection in order to acquire statistically
sufficient model training samples for every new scene. This
makes installation costly, prevents models from being easily
relocated, and from being used in UAVs with continuously
changing scenes. In contrast, our method adopts a geomet-
rical matching approach to relate motion models learned
from a database of source scenes (source domains) with a
handful sparsely observed data in a new target scene (target
domain). This framework is capable of online “sparse-shot”
anomaly detection and motion event classification in the un-
seen target domain, without the need for extensive data col-
lection, labelling and offline model training for each new
target domain. That is, trained models in different source
domains can be deployed to a new target domain with only
a few unlabelled observations and without any training in
the new target domain. Crucially, to provide cross-domain
interpretation without risk of dramatic negative transfer,
we introduce and formulate a scene association criterion to
quantify transferability of motion models from one scene to
another. Extensive experiments show the effectiveness of the
proposed framework for cross-domain motion event classifi-
cation, anomaly detection and scene association.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing—Motion, Representations, data structures, and trans-
forms; I.4.7 [Image Processing And Computer Vision]:
Feature Measurement—Invariants

Keywords
Transfer Learning; Anomaly Detection; Visual Surveillance;
Gaussian Mixtures
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1. INTRODUCTION
With the proliferation of video surveillance systems, un-

usual behaviour and event detection systems are in increas-
ing demand. Thousands of existing surveillance cameras are
producing gigantic amounts of surveillance data. Automatic
interpretation of unusual events of interest in wide-area pub-
lic scenes such as road traffic is highly desirable. Many stud-
ies have thus focused on automatic learning of traffic scene
models, with which anomalies can be detected [10, 5, 23,
8]. However, a readily re-deployable model trained from
one scene for applying to another still does not exist be-
cause current approaches rely on two strong assumptions:
(1) long term data collection and learning in a target do-
main is always possible, and/or (2) the target and train-
ing domains have the same or very similar characteristics
in both their motion event distribution and feature space
representation. As a result, most models require training
and deployment on the same scene, and cannot be applied
readily across-domain [6, 14]. Consequently for each new
scene deployment, one needs to collect new data and retrain
the model from scratch. For supervised classification of be-
haviours, this requires costly annotation of new data. For
scenes with sparse activities, collecting a statistically suffi-
cient volume of training data may take a prohibitive amount
of time and manpower. In recent years, the increasing need
for non-stationary Unmanned Aerial Vehicle (UAV) surveil-
lance has further highlighted the limitations of model con-
struction based on these two strong assumptions. For typical
UAV scenarios, event classification and anomaly detection
from aerial data sources require an immediate response and
preclude the possibility of collecting enough training data
for a scene, let alone annotating data and re-learning models
for continuously changing scenes. Therefore, cross-domain
scene interpretation has increasingly become not only de-
sirable but also critical for practical deployment and non-
stationary surveillance.

To address this problem, in this work we introduce a
novel cross-domain scene interpretation framework. This
framework performs offline learning on a batch of multiple
source domains and then provides online interpretation of
object activity events in an unseen target domain by spatio-
temporal matching to the source domain observations. In
this way, we can leverage an arbitrary (and increasing) vol-
ume of prior data, annotation and learned models in order
to allow a new target domain scenario to be interpreted with
only few bootstrapping observations and no supervision. We
call this cross-domain “sparse-shot” event classification and
anomaly detection. The sparse unlabelled observations in



the target domain are utilised online to enable automatic se-
lection of the most relevant source domains for model trans-
fer. Specifically, we use tracking data of object motion in
each domain and compare tracks across-domain using the
Kullback-Leibler Divergence (KLD) between their mixture
of Gaussians (GMM) representations. To compare tracks
across heterogeneous domains, we optimise KLD over simi-
larity transforms, thus achieving a similarity-transform/domain
invariant distance metric. Building on this capability, the
proposed framework is able to compare/quantify entire do-
mains for cross-domain similarity and thus match domains
without negative scene knowledge transfer, and hence clas-
sify individual target-domain object tracks and quantify their
abnormality. Crucially, this is all achieved without the typi-
cally required extensive target domain data collection, offline
labelling and model training process.

1.1 Related Work
Currently, there are two broad categories of approaches to

anomalous motion event detection depending on the features
used [19]. One category of approaches employs low-level im-
age features [10, 5, 23], while the other category generates
high-level features by performing target detection and track-
ing [6, 14, 8]. Low-level feature approaches employ, for ex-
ample, background subtraction [10], tracklets [23], granular
particles [12] or optical flow [18, 21, 5]. Then motion events
or activity patterns are learned from these features. The
low-level feature approaches may be superior when the scene
is extremely crowded or partially occluded so that tracking
may fail to produce meaningful results. However, since indi-
vidual objects are not identified in most of these approaches,
detected anomalies often cannot be attributed to specific ob-
jects.

The second group of approaches extract motion tracks of
individual objects by multi-target tracking [6, 13, 8]. Track
based methods have also been extensively studied for anomaly
detection, and have the advantage that a detected unusual
event can be unambiguously associated to a particular ob-
ject. Motion pattern or path models are usually learned
beforehand from large volumes of training data, which may
be clustered into particular templates of motion events such
as“turn-right”or“go-straight”. New trajectories can be clas-
sified by matching against the event-templates, or evaluated
for abnormality by the likelihood under the entire model [8],
or the distance to the nearest template [14].

Although good performance has been achieved in a va-
riety of datasets using these techniques, a severe drawback
of existing approaches is their highly problem/domain spe-
cific nature. Both low-level feature and track based meth-
ods require long-term collection of training data to be ef-
fective. For example, enough typical events (atomic events
or trajectories) must be obtained to properly model the dis-
tribution of normal activities in order to perform accurate
anomaly detection [8, 14, 5]. To overcome this problem, a
recent study [7] proposed geometrical transformation to as-
sist cross-domain motion pattern recognition. However, this
model uses low-level optical flow features [18] and lacks of an
explicit object model. To be able to associate events with in-
dividual objects is of great interest in anomaly detection. In
our work we overcome this problem by analysing track fea-
tures in a similarity transform invariant way, building on and
leveraging the geometrical transform optimisation model.

Overall, our contributions are as follows: (1) Introduce
and solve a novel problem of cross-domain sparse-shot ab-
normal motion event detection without any model train-
ing (supervised or unsupervised) in the target domain, (2)
solve the problem of cross-domain sparse-shot object motion
event (trajectory-based) classification and, (3) formulate a
model to quantify cross-domain scene association relevance
using the sparse target domain observations. This enables
our framework to automatically match a target domain to
its most similar/relevant source domain for motion model
transfer and thus maximise cross-domain event recognition
and anomaly detection while avoiding negative transfer.

2. METHODOLOGY
In this work we address sparse-shot object motion event

classification and anomaly detection. To achieve this we
first introduce a probabilistic model for object tracks (mo-
tion events) and track clusters (motion event models) (Sec-
tion 2.1), followed by a view invariant distance metric for
track matching (Section 2.2). Crucially, we also show how to
quantify cross-domain transferability and select appropriate
source domains for motion model transfer (Section 2.3). Fi-
nally, building on these two capabilities, we present a model
for cross-domain sparse-shot anomaly detection and motion
event classification (Section 2.4).

2.1 Motion Model and Event Representation
We first describe the construction of a probabilistic mo-

tion event and motion model representation from observed
object motion tracks. We track each individual object (e.g.,
a vehicle in a traffic scene) using the tracker [17]. Each
trajectory Ti of length ni is represented by a sequence of
coordinates and time-stamps Ti = {(xi,j , yi,j , ti,j)}j=1...ni .
Note that this representation keeps the directional informa-
tion via time-stamp t. We filter broken trajectories with a
threshold on minimum length.

Modeling motion patterns.
To learn a domain-specific object motion event model in a

given scene, we cluster object trajectories to obtain typical
motion patterns or events for the scene. Before clustering,
we normalise trajectory length. To that end, we employ
the Douglas-Peucker algorithm [1] to segment the trajec-
tory at a set of control points. A re-sampled trajectory with
a fixed number of Nt points is then obtained by linearly
interpolating each interval between proximal control points.
Given this pre-processed set of length-normalised object mo-
tion trajectories, we over-cluster them using Fuzzy C means
(FCM) with Euclidean distance [13] into a large number of
C0 clusters to ensure all modes of object behaviour in the
given scene are represented. For each cluster c = 1, . . . , C0,
we fit a N component Gaussian mixture model (GMM) to
the fixed length trajectories in that cluster. Each trajec-
tory cluster therefore has a probabilistic representation as
gc(x) =

PK
k=1 wkN (x;µk,c,Σk,c) (where µ and Σ are the

mean and covariance of each GMM component). To reduce
the computational burden, we eliminate redundant clusters
from the over-clustering FCM step by computing pairwise
KLD (see Section 2.2) between each cluster, and applying
self-tuning spectral clustering [22] to determine automat-
ically the optimal number C of motion patterns (trajec-
tory clusters) representing the typical motion events in the



scene. This over-clustering followed by pruning process en-
sures that all the modes of variability in the scene are rep-
resented. Without this, direct clustering can result in the
most common trajectory types dominating and less-common
motion events not being modelled.

Modeling individual trajectories.
Finally, we need to establish a probabilistic representation

of an individual run-time object trajectory to interpret un-
der the motion patterns defined above. We define a GMM
for each test trajectory by a Gaussian centred on each obser-
vation [xj , yj , tj ] with diagonal covariance. x and y variance
are set to the bounding-box size – since the object centre is
somewhere in the bounding box – and t variance set to σt

so to reflect maximum expected speed.

2.2 Cross-Domain Transfer of Motion Models
Given the proposed probabilistic representation of object

motion events based on individual trajectories, we now de-
scribe a similarity measure to compare object motion models
and events. We first describe the within-domain case before
generalising to the across-domain case which needs to ac-
count for the potentially different scene geometries.

Within-domain comparisons.
The probabilistic (GMM) representation established for

motion events and motion patterns has the advantage of
modelling the covariance in motion patterns, however this
necessitates some care in defining suitable similarity mea-
sures. To quantify the similarity between probabilistically
represented motion events, we exploit the Kullback-Leibler
Divergence [7] (KLD) which measures the similarity between
distributions. Note that both object tracks and track clus-
ters are modelled as distributions. The KLD between two
distributions gm(x) and gt(x) is:

KLD(gm || gt) =

Z
gm(x) log

„
gm(x)

gt(x)

«
dx. (1)

Since there is no analytical solution for the KLD in the case
of GMMs distributions, we employ a Monte Carlo approx-
imation [4]. M vectors xm = [xj , yj , tj ] are sampled from
gm(x) and used to approximate the KLD by evaluating their
likelihood under gt(x):

KLD(gm || gt) ≈
1

M

MX
j=1

log

„
gm(xm

j )

gt(xm
j )

«
. (2)

Since a trajectory cluster typically has larger variance than
an individual trajectory, the forward KLD is usually much
greater than the backward KLD. To obtain a more stable
similarity metric suitable for comparing both trajectories
and clusters, we utilise the average of forward and back-
ward measures (KLD(gm || gt) and KLD(gt || gm)), i.e. the
Jensen-Shannon Divergence (JSD) [11].

Cross-domain mapping.
We are ultimately interested in cross-domain motion model

and motion event comparisons by mapping object motion
trajectories and their clusters in order to facilitate across-
domain scene understanding. For wide area surveillance,
semantically equivalent motion events differing only in their
view geometry can be arbitrarily different in image plane,

but are equivalent under an geometric similarity transfor-
mation H (a 3×3 matrix). That is, the same, or two seman-
tically equivalent scenes viewed from differing angles cannot
be compared directly unless the translation, scaling and ro-
tation (H) that relates them is known. Therefore to define
a distance measure capable of comparing trajectories and
motion patterns across different view of unknown geometry,
it should be invariant to the similarity transform H relating
them.

To quantify the distanceD(gm, gt) = KLD(gm||gt) (Eq. (2))
between GMM representations of trajectories and motion
patterns in a view-independent way, we therefore optimize
the metric DH(gm, gt) = KLD(gm||gHt ) for transformation
H in each comparison. Here gHt indicates geometric trans-
formation of the motion model gt(x) by H. The optimal
transformation H∗ is the one that maximizes their similar-
ity. For GMMs models under the distance approximation
Eq. (2), this corresponds to maximising the likelihood of
points sampled from GMM gm under transformed GMM
distribution gHt :

H∗ = argmax
H

log

MY
j=1

KX
k=1

wkN (xj ; Hµk,HΣkHT ). (3)

As in [7], we approximately optimise Eq. (3) by proxy of al-
ternating estimating point correspondences using the Hun-
garian algorithm [9], and directly fitting H given fixed cor-
respondences [3] (illustrated in Figure 1). This is necessary
because without correspondence least-squares transforma-
tion estimation (LSE) is meaningless, but correspondence
cannot be estimated unless the two patterns are in align-
ment.

In contrast to [7], there are three notable differences: (i)
We do not need the path-context information required to
avoid the local minima problem in [7]. This is because the lo-
cal minima is in fact a mismatch in temporal order, whereas
in our case the temporal information is already modelled
by the third (time) dimension of our probabilistic trajec-
tory model; (ii) We use the Hungarian-LSE alternation of
[7] to get an initial condition, followed by direct optimisa-
tion for Eq. (3) using BFGS [15]. This is a better solution
than solely optimising Eq. (3) by proxy [7], because there is
no formal relation between the alternation and Eq. (3). Fi-
nally, (iii) for our final distance metric between trajectories
or clusters m and t; both within and across scenes, we use
the JSD (Eq. (4)) which allows us to make stable compari-
son between tracks and clusters whilst the model of [7] only
performs cluster-cluster comparison.

DH∗
(gm, gt) = KLD(gm||gH

∗
t ) +KLD(gH

∗
t ||gm). (4)

The methods described in this section enable cross-domain
(similarity transform invariant) comparison of motion events
(tracks and clusters). However the central issue with exploit-
ing this capability in practice is that these comparisons are
only useful / meaningful if the domains across which they
are being compared are semantically related. This is a fun-
damental question unaddressed by the model of [7]. We shall
address this problem next.

2.3 Transferability Measurement
We now describe how to quantify transferability between

domains in order to effectively exploit the cross-domain com-
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Figure 1: Cross-domain trajectory matching process. From left to right, two trajectory point sets are
corresponded by the Hungarian algorithm, then a transformation is estimated based on the correspondence.
The transformation is obtained by iterating this process.

parisons introduced in the previous section and hence achieve
fully automatic sparse-shot cross-domain classification and
anomaly detection. This question of“from where”to transfer
is a known hard problem in transfer learning [16]. Relating
one domain to an irrelevant domain typically results in worse
performance than no transfer at all (negative transfer), and
avoiding this is crucial. Insofar as the “from where” to trans-
fer problem has been addressed [16], it typically requires la-
beled data in the target and source domain. Importantly, we
will avoid making this assumption here, as relaxing this im-
practical requirement significantly increases the usefulness
of such a system.

Assume there are s = 1, . . . , S available source domains.
For each of these we have learned a collection of c = 1, . . . , Cs

motion event models in the form of GMMs {gs,c(x)}Cs
c=1.

Each source domain motion model may have a semantic la-
bel c if the goal is target domain classification. Now given
a target domain t with a set of trajectories T t = {gt(x)}
observed online, we determine the most relevant source do-
main s∗ for transfer to the current domain t by matching
the distribution of trajectory-cluster distances within in the
source (Hss) and across the target-source mapping (Hts):

Hts = Hi∈T t(mincsD
H∗

(gs,cs , gi)),

Hss = Hj∈T s(mincsD(gs,cs , gj)),

s∗ = argmins(‖Hts −Hss, ‖). (5)

Here H(·) indicates the histogram operator, i ∈ T t and
j ∈ T s index target (gi) and source (gj) trajectories and
respectively, gs,cs are the clustered motion patterns in the
source domain, H∗ is the optimal cross-domain transform
(Eq. (3)), ‖ · ‖ is Euclidean distance, and the minimisation
over cs indicates matching clusters in source s. Thus do-
mains are encoded by the spread of fits between trajectories
and clusters, and matched by the similarity of those spreads.

This is derived from the intuition that two scenes which
appear semantically similar to humans should have a similar
distribution of motion. It is related to covariance descriptor
methods in recognition [20] insofar as using the whole dis-
tribution of matches rather than quantifying a single good-
ness of fit. Two obvious alternatives are: (i) finding a rigid

(rather than per-trajectory) similarity transform of all the
target trajectories to sources, however this is computation-
ally intractable and non-robust to e.g., piece-wise differences
in scene layout; and (ii) finding the “best fit” source with
minimum distance of individual target trajectories to the
closest source patterns (Eq. (6))

s∗ = argmins(
X
i∈T t

mincsD
H∗

(gs,cs , gi)). (6)

However this will over fit in that a complicated source scene
with many different behaviours will always be the best fit
for any target scene. In contrast, the proposed method is
tractable and does not suffer from over fitting, as considering
the full distribution of distances differentiates such domains.

As data is observed online in a target domain, we contin-
ually estimate and dynamically select the source domain for
transfer via Eq. (5). Importantly, as we will show in the ex-
periments, a good source domain can be selected with much
less data than is required to build an effective local model in
the target domain. Figure 2 illustrates the domain matching
process.

2.4 Sparse-shot Anomaly Detection and Cross-
Domain Event Classification

Given the domain-independent distance metric as explained
in Section 2.2, and the optimal scene matching procedure
as explained in Section 2.3, sparse-shot cross-domain event
classification and anomaly detection is straightforward as
follows. Trajectories represented as gt(x) in the target do-
main can be classified using the class c∗ of their nearest
source cluster:

c∗ = argmincD
H∗

(gt, gc,s∗), (7)

where s∗ is the optimal source scene as determined by Eq. (5)
using the data observed so far. Importantly, this allows clas-
sification in the target domain without requiring any anno-
tations.

For anomaly detection, we consider the (similarity invari-
ant) distance of gt(x) from the nearest cluster in the chosen
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source domain s∗:

Dt = mincD
H∗

(gt, gc,s∗). (8)

Anomalous trajectories are flagged as those with distances
Dt above a threshold θth. By quantifying abnormality rel-
ative to a selected semantically similar source domain s∗,
significantly better anomaly detection can be obtained than
by detecting anomalies against a local model built online us-
ing sparse/insufficient online observations. This is because
the sparse target domain data can be used more effectively
to match source domains online than to construct a good
local model from scratch in the target domain.

3. EXPERIMENTS
Datasets: A motivating application of our framework

is anomaly detection and event classification in surveillance
videos captured by UAV platforms with far-field view. There-
fore the NGSIM dataset [2] which is mainly taken by fixed
cameras from a far field of view are good candidates in being
representative of UAV videos. We evaluate our contributions
on four scenes from NGSIM dataset: Lankershim 2 (LC2),
Lankershim 4 (LC4), Peachtree 1 (PC1), and Peachtree 3
(PC3). These cover a variety of view angles and scene types,
see Table 1 and Figure 3.
Preprocessing and Settings: For each scene, we extract
all available trajectories (Table 1). We then over-cluster tra-
jectories (Section 2.1; using C0 = 80 as this is significantly
more than the number of typical motion patterns) followed
by self-tuning spectral clustering to merge motion models
into representative clusters (Table 1). Then each trajectory
cluster is represented by a corresponding motion pattern in
the form of a GMM (Section 2.1) as illustrated in Figure 3.
We test the performance of sparse-shot anomaly detection
and classification on all 4 scenes (domains) in a leave one

dataset out protocol. That is, we evaluate each dataset in
turn as a target while considering the other there datasets
as source domains.
Alternative Models: We compare the following three
models: (1) Direct Transfer by fixing each source do-
main in turn as the source; (2) Local by building a local
model online with limited data (only for anomaly detec-
tion, not classification since annotation is assumed unavail-
able). This is the conventional approach to classification
and anomaly detection [6, 13] generalised to online learn-
ing. For online learning we process target domain trajec-
tories in chunks and build an updated motion model after
observing every N additional trajectories, using this model
to interpret the next chunk of trajectories; (3) Baseline
by brute-force transfer, aggregating motion models from all
available source domains. This provides a baseline for trans-
fer anomaly detection and classification, but without source
selection. Trajectories in the target domain are compared
with motion models from all available source domains. (4)
Best Fit Transfer is the simplest source domain selecting
method. We select the source domain with minimal (trans-
formed) distance of individual target trajectories to source
clusters (Eq. (6)) after each batch of observed trajectories.
(5) Selective Transfer is our full selective domain-transfer
model. After each batch of input, we compute the transfer-
ability metric Eq. (5), and use the selected source to inter-
pret observed trajectories.

3.1 Evaluation and Results
In these experiments, we evaluate the ability of our frame-

work to select source domains and classify and detect ab-
normal motion events. Since there is no clear ground-truth
for domain selection, we evaluate domain selection by way
of whether the selected domain provides effective classifica-



Scenes Frames Rate Resolution View Anomalies Number of Trajectories Learned Clusters

PC1 29918 10 f/s 640x480 45− 60◦ 1 2317 19
LC2 21700 10 f/s 640x480 Nadir 3 2412 28
PC3 29918 10 f/s 640x480 45− 60◦ 1 1468 19
LC4 20950 10 f/s 640x480 45− 60◦ 3 2444 10

Table 1: Statistics and pre-processing results of each scene (domain).

(a) PC1 (b) LC2

(c) PC3 (d) LC4

Figure 3: Learned motion patterns (trajectory clus-
ters) for each scene.

tion and detection. For abnormality detection, we manu-
ally annotated abnormal events in each scene (see Table 1
for statistics) which included events such as pedestrian jay-
walking, u-turns and swerving. Good models should rank
anomalies higher than typical motion events. To evaluate
anomaly detection performance, we therefore compute the
receiver operating characteristic (ROC) curve, which reflects
true positive versus false positive rate as detection thresh-
old θth is varied. This is then summarised by area under
the curve (AUC) metric. For classification, we manually la-
beled events in each scene into three categories (turn-left,
turn-right, go-straight). Classification performance is then
evaluated by simple accuracy for each scene.

Source Selection for Classification: The results for di-
rect and selective transfer methods are summarised in Fig-
ure 4. The first and second column show the source selection
transferability metric for best fit and selective transfer re-
spectively as a function of observed trajectory batch in the
target dataset. In each case, both source-selection metrics
converge to a consistent winner, very quickly relative to the
length of the dataset (Figure 4, one line / source above the
others quickly and consistently). However as expected, the
best fit metric consistently prefers the most complex dataset
(LC2), whereas only selective transfer metric selects a differ-
ent source in each case, showing the selectivity of our metric.

The third column shows the classification accuracy for
each approach (three direct transfer conditions with coloured
symbols, brute-force transfer (Baseline) in cyan dash-dot,
best fit transfer in orange dash and our selective transfer
framework in bold black). Considering the direct transfer
conditions, each source dataset is sometimes worst by a sig-

(a) PC1 (LC2 selected) (b) LC2 (PC1 selected)

(c) PC3 (LC4 selected) (d) LC4 (PC3 selected)

Figure 5: Illustration of abnormal events detected
in each scene. Color indicates time.

nificant margin. Meanwhile the brute-force baseline and
best fit transfer mechanisms are also worst or near worst
in some cases. In contrast, across the diverse combinations
of sources and targets, our selective transfer framework is
usually best (PC1) or near best (PC3, LC2 and LC4) over-
all. Importantly, our selective transfer metric consistently
avoids the worst source (unlike best fit for LC4 and PC3),
and is robust in case where the brute-force baseline is seri-
ously poor (LC4). These results reflect both the serious risk
of negative transfer and our framework’s robustness to it.

Source Selection for Anomaly Detection: Anomaly
detection performance is shown in Figure 4, fourth column.
Again, in each case our selective transfer framework is best
(PC3) or near-best (PC1, LC2, LC4) compared to fixed
source domains transfer. Here the brute-force baseline per-
forms closer to selective transfer, but an noticeable margin
is still present in the PC3 case, where best fit also selects
the worst source. Some detected abnormal events are illus-
trated in Figure 5, along with the selected source domain for
each target. PC1 and LC2 are estimated to exhibit mutual
transferability as well as PC3 and LC4. This is understand-
able given the straight nature of the first two scenes and the
curvy nature of the latter two scenes. This source selection
allows more effective anomaly detection. For example the
U-turn and swerving driving in PC1 and LC2 respectively
are ranked more highly as anomalies with LC2 and PC1 as
the respective sources than they would be with PC3 and
LC4 (which are intrinsically more curvy) as the sources.

Sparse Data Stability of Source Selection: We next
ask how stable is source selection in the rapid deployment
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Figure 4: Cross-domain scene understanding. Rows: Target scenes. Columns: (1st) Source selection metric.
(2nd) Classification accuracy. (3rd) Anomaly detection AUC.

/ very sparse target data context of interest, and how this
compares to building a local model online. To test this we
evaluate the detection of each target domain anomaly, em-
bedded in a test set consisting of the 100 adjacent typical
trajectories. We vary the size of a learning window (from 1
to 250 trajectories in batches of 10) ahead of test set in the
data stream – effectively controlling how much data the local
model has to learn typical behaviours, and how much data

the transfer model has to select a suitable source scene. The
results in Figure 6 show that our selective transfer frame-
work (bold black) performs reasonably despite the extremely
sparse data, selecting the best source in the 2 cases where
the margin between best and worst is significant (PC3 and
LC4). We note that in the two cases where selective does not
make the best choice, it will eventually do so given enough
data (PC1 and LC2 in Fig. 4). Compared to brute-force
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Figure 6: Anomaly detection with sparse data:
Comparing constructing a local model with sparse
data against using this data for domain selection.

and best fit transfer, selective transfer is in each case same
or better in 3 datasets and worse in only one.

The most conventional strategy of building a local model
online (brown) generally performs poorly, and importantly is
very unstable. This is because with statistically insufficient
training data, the rank of the anomaly varies dramatically
as the particular samples included in the growing training
set vary. Importantly, and in contrast to this instability, the
source selection is quite stable even with such sparse inputs
– performing consistently from as few as 10 observed trajec-
tories. This highlights the important conclusion that sparse
target domain data is much more effectively used for com-
puting selective transfer to well understood domains than
for building a weak statistically insufficient local model.

Discussion It is worth noting that a key aim of selec-
tive transfer is to avoid negative transfer by selecting source
models which are suitable for interpreting target events.
Previous methods such as [7] have considered transfer from
one scene to another, but not how to deal with multiple
sources of varying relevance. For this reason it is not pos-
sible to pose a direct comparison to [7], since it depends
on how this would be generalised to make use of multiple
sources. If it used one specific source, then it would roughly
correspond to our single source conditions (aside from our
technical improvements, mentioned in Section 2.2). If it
aggregated all the source data together, it would roughly
correspond to our brute-force baseline condition.

We have seen that best fit transfer falls down in non-
selectively preferring the most complex scene. Meanwhile,
brute-force transfer is intrinsically limited in the long term,
as aggregating multiple sources increases over-fitting mono-
tonically. Consider the case of anomaly detection: as many
more source scenes are added to the pool, eventually some
scene in which every behaviour is normal has been added.
Now every target domain track – even abnormal ones – can

be well explained by some source domain data, and anomaly
detection is poor. Clearly this misses the point of context:
abnormality is context dependent according to the seman-
tics of the scene. Correctly determining the context in which
an event should be interpreted is exactly what is achieved
by our selective transfer mechanism.

4. CONCLUSION
We proposed a novel framework for cross-domain traffic

scene understanding via motion model transfer. By learn-
ing models of a batch of source domains offline, we can do
cross-domain sparse-shot anomaly detection and classifica-
tion in a new scene. Crucially, we introduce a robust domain
similarity criterion that enables robust domain-transfer by
finding the most relevant source domain among a heteroge-
neous batch. Selecting a well learned source scene turns out
to be a much more effective use of sparse local data than
learning a local model. These results are an important con-
tribution toward the topical goals of achieving re-locatable
and hence scalable surveillance models. In future work we
aim to further refine the computation of scene transferabil-
ity, and will also develop this framework toward application
to dynamic UAV surveillance.
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