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Abstract. Zero-Shot Learning (ZSL) promises to scale visual recogni-
tion by bypassing the conventional model training requirement of an-
notated examples for every category. This is achieved by establishing a
mapping connecting low-level features and a semantic description of the
label space, referred as visual-semantic mapping, on auxiliary data. Re-
using the learned mapping to project target videos into an embedding
space thus allows novel-classes to be recognised by nearest neighbour
inference. However, existing ZSL methods suffer from auxiliary-target
domain shift intrinsically induced by assuming the same mapping for
the disjoint auxiliary and target classes. This compromises the generali-
sation accuracy of ZSL recognition on the target data. In this work, we
improve the ability of ZSL to generalise across this domain shift in both
model- and data-centric ways by formulating a visual-semantic mapping
with better generalisation properties and a dynamic data re-weighting
method to prioritise auxiliary data that are relevant to the target classes.
Specifically: (1) We introduce a multi-task visual-semantic mapping to
improve generalisation by constraining the semantic mapping parame-
ters to lie on a low-dimensional manifold, (2) We explore prioritised data
augmentation by expanding the pool of auxiliary data with additional
instances weighted by relevance to the target domain. The proposed new
model is applied to the challenging zero-shot action recognition problem
to demonstrate its advantages over existing ZSL models.

1 Introduction

Action recognition has long been a central topic in computer vision [1]. A ma-
jor thrust in action recognition is scaling methods to a wider and finer range
of categories [2–4]. The traditional approach to dealing with a growing number
of categories is to collect labeled training examples of each new category. This
is not scalable, particularly in the case of actions, due to the temporally ex-
tended nature of videos compared to images, making annotation (segmentation
in both space and time) more onerous than for images. In contrast, the Zero-
Shot Learning (ZSL) [5, 6] paradigm is gaining significant interest by providing
an alternative to classic supervised learning which does not require an ever in-
creasing amount of annotation. Instead of collecting training data for the target
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categories1 to be recognised, a classifier is constructed by re-using a visual to
semantic space mapping pre-learned on a training/auxiliary set 2 of totally in-
dependent (disjoint) categories. Specifically training class labels are represented
in a vector space such as attribute [5, 7] or word-vectors [6, 8]. Such vector rep-
resentations of class-labels are referred to as semantic label embeddings [7]. A
mapping (e.g. regression [9] or bilinear model [7]) is learned between low-level
visual features and their semantic embeddings. This mapping is assumed to gen-
eralise and be re-used to project visual features of target classes into semantic
embedding space and matched against target class embeddings.

A fundamental challenge for ZSL is that in the context of supervised learning
of the visual-semantic mapping, the ZSL setting violates the traditional assump-
tion of supervised learning [10] – that training and testing data are drawn from
the same distribution. Thus its efficacy is reduced by domain shift [11–13]. For
example, when a regressor is used to map visual features to semantic embedding,
the disjoint training and testing classes in ZSL intrinsically require the regressor
to generalise out-of-bounds. This inherently limits the accuracy of ZSL recog-
nition. In this work, we address the issue of the generalisation capability of a
ZSL mapping regressor from both the model- and data-centric perspectives: (1)
by proposing a more robust regression model with better generalisation prop-
erties, and (2) improving model learning by augmenting auxiliary data with a
re-weighted additional dataset according to the relevance to the target problem.

Multi-Task Embedding When establishing the mapping between visual fea-
tures and semantic embeddings, most ZSL methods learn each dimension of this
mapping independently – whether semantic embedding is discrete as in the case
of attributes [5, 7], or continuous as in the case of word vectors [6, 8]. This strat-
egy is likely to overfit to the training classes because it treats each dimension
of the label in semantic embedding independently despite the labels living on
a non-uniform manifold [14] and many independent mappings result in a large
number of parameters to be learned. We denote this conventional approach as
Single-Task Learning (STL) due to the independent learning of mappings for
each attribute/word dimension. In contrast, we advocate a Multi-Task Learning
(MTL) [15, 16, 10] regression approach to mapping visual features and their se-
mantic embeddings. By constraining the mapping parameters of each learning
task to lie closely on a low-dimensional manifold, we gain two advantages: (1)
Exploiting the relation between the response variables (dimensions of the label
embedding), (2) reducing the total number of parameters to fit. The resulting
visual-semantic mapping is more robust to the domain shift between ZSL train-
ing and testing classes. As a helpful byproduct, the MTL mapping, provides a
lower dimensional latent space in which the nearest neighbour (NN) matching
required by ZSL can be better performed [17] compared to the usual higher
dimensional label semantic embedding space.

1 Target and testing all refer to categories (e.g. action classes) to be recognised without
labelled examples.

2 Auxiliary and training all refer to categories (e.g. action classes) with labelled data.
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Fig. 1. Two strategies to improve generalisation of visual-semantic mapping in ZSL.
Left: Importance weighting to prioritise auxiliary data relevant to the target domain.
Right: Learning the mapping from visual features X to semantic embedding Z by MTL
reduces overfitting, and also provides a latent lower dimensional representation {lt} to
benefit nearest neighbour matching.

Prioritised Auxiliary Data Augmentation for Domain Adaptation
From a data-, rather than model-centric perspective, studies have also attempted
to improve the generalisation of ZSL methods by augmenting3 the auxiliary
dataset with additional datasets containing a wider array of classes and instances
[9, 18]. The idea is that including a broader additional set should provide better
coverage of the visual feature and label embedding spaces, therefore helping to
learn a visual-semantic mapping that better generalises to target classes, and
thus improves performance when representing and recognising target classes.
However, existing studies on exploring this idea have been rather crude, e.g.
simply expanding the training dataset by blindly concatenating auxiliary set
with additional data [9]. This is not only inefficient but also dangerous, because
it does not take into account the (dis)similarity between the extra incorporated
data and the target classes for recognition, thus risking negative transfer [10].
In this work, we address the issue that auxiliary and target data/categories will
have different marginal distributions (Fig 1). We selectively re-weight those rel-
evant instances/classes from the auxiliary data that are expected to improve
the the visual-semantic mapping in the context of the specific target classes to
be recognised (target domain). We formulate this prioritised data augmenta-
tion as a domain adaptation problem by minimizing the discrepancy between
the marginal distributions of the auxiliary and target domains. To achieve this,
we propose an importance weighting strategy to re-weight each auxiliary in-
stance in order to minimise the discrepancy. Specifically we generalise the clas-
sic Kullback-Leibler Importance Estimation Procedure (KLIEP) [19, 20] to the
zero-shot learning problem.

3 In this work, data augmentation means exploiting additional data in a wider context
from multiple data sources, in contrast to synthesising more artificial variations of
one dataset as in deep learning.
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2 Related Work

Zero-Shot Learning Zero-shot Learning (ZSL) [5] aims to generalize existing
knowledge to recognize new categories without training examples by re-using a
mapping learned from visual features to their semantic embeddings. Commonly
used label embeddings are semantic attributes [5, 21, 11] and word-vectors [6,
9]. The latter has the advantage of being learned from data without requiring
manual annotation. Commonly used visual-semantic mappings include linear [12]
and non-linear regression [11, 6, 9], classification [5, 21], and bilinear ranking [7].

Existing ZSL methods suffer from weak generalisation due to the domain-
shift induced by disjoint auxiliary-target classes, an issue that has recently been
highlighted explicitly in the literature [8, 11–13]. Attempts to address this so far
include post-processing heuristics [11–13], sparse coding regularisation [8], and
simple blind enlarging of the training set with auxiliary data [9]. In contrast
to [8, 9], we focus on: (1) Building a visual-semantic mapping with intrinsically
better generalisation properties, and (2) re-weighting the auxiliary set to priori-
tise auxiliary instances most relevant to the target instances and classes. Our
method is complementary to [11, 12] and can benefit from these heuristics.

Zero-Shot Action Recognition Among many ZSL tasks in computer vision,
zero-shot action recognition [21, 9, 22–24] is of particular interest because of the
lesser availability of labelled video compared to image data and videos are more
difficult to label than static images due to extended temporal duration and more
complex ontology. ZSL action recognition is much less studied than still image
recognition, and existing video-ZSL methods suffer from the same domain-shift
drawbacks highlighted above.

Multi-Task Regression Learning Multi-Task Learning (MTL) [10, 25] aims
to improve generalisation in a set of supervised learning tasks by modelling and
exploiting shared knowledge across the tasks. An early study [15] proposed to
model the weight vector for each task t as a sum of a shared global task w0 and
task specific parameter vector wt. However, the assumption of a globally shared
underlying task is too strong, and risks inducing negative transfer [10]. This
motivates the Grouping and Overlapping Multi-Task Learning (GOMTL) [16]
framework which instead assumes that each task’s weight vector is a task-specific
combination of a small set of latent basis tasks. This constrains the parameters
of all tasks to lie on a low dimensional manifold.

MTL methods have been studied for action recognition [26–29]. However, all
of these studies focus on improving standard supervised action recognition with
multi-task sharing. For example, considering each of multiple views [28, 29], fea-
ture modalities [27], or – most obviously – action categories [26] as different
tasks. Multi-view/multi-feature recognition is orthogonal to our work, while the
later ones are concerned with supervised recognition, and cannot be generalised
to the ZSL scenario. In contrast, we take a very different approach and treat each
dimension of the visual-semantic mapping as a task, in order to leverage MTL to
improve auxiliary-target generalisation across the disjoint target categories. Fi-
nally, we note that the use of MTL to learn the visual semantic mapping provides



Multi-Task Zero-Shot Action Recognition 5

Table 1. Notation Summary

Notation Description

ntr
c ;nte

c Number of training categories ; testing categories
ntr
x ;nte

x Number of all training instances; all testing instances

X ∈ Rdx×nx ; xi Visual feature matrix for N instances; column representing the i-th instance
Y ∈ {0, 1}nc×nx ; yi Binary class labels for N instances 1-of-nc encoding; column representing the i-th instance

V ∈ Rdz×nc ; Semantic label embedding for nc categories;

Z ∈ Rdz×nx ; zi Semantic label embedding for nx instances; column representing the i-th instance

W ∈ Rdz×dx ; wd STL regression coefficient matrix; row representing the regressor for the d-th dimension

A ∈ RT×dx ; at MTL regression coefficient matrix; row representing the regressor for the t-th latent task

S ∈ Rdz×T ; sd MTL linear combination matrix; row representing linear combination vector for the d-th output
L ∈ RT×nx ; li Latent space embedding for visual instances; column is ith instance
ω ∈ Rnx×1 weighting vector for auxiliary data
f : X→ Z Visual to semantic mapping function

a further benefit of a lower-dimensional space in which zero-shot recognition can
be better performed due to being more meaningful for NN matching [17].

Importance Weighting for Domain Adaptation Domain shift is a widely
studied problem in transfer learning [10], although it is usually induced by sam-
pling bias [30, 31] or sensor change [32] rather than the disjoint categories in
ZSL. Importance weighting (IW) [19, 31] has been one of the main adaptation
techniques to address this issue. The prior work in this area is designed for the
standard domain transfer problem in a supervised learning setting [33], while we
are the first to generalise it to the zero-shot learning scenario. The IW technique
we generalise is related to another domain adaptation approach based on discov-
ering a feature mapping to minimise the Maximum Mean Discrepancy (MMD)
[34, 35] between distributions. However MMD, is less appropriate for us due to
focus on feature mapping rather than instance reweighing, and our expectation
is that only subsets of auxiliary instances will be relevant to the target rather
than the holistic auxiliary set.

Contributions This paper contributes both model- and data-centric strate-
gies to improve ZSL action recognition: (1) We formulate learning a more gener-
alisable visual-semantic mapping in ZSL as a multi-task learning problem with
a lower-dimensional latent semantic embedding space for more effective match-
ing. (2) We improve visual-semantic regression generalisation by prioritised data
augmentation using importance weighting of auxiliary instances relevant to the
target domain.

3 Visual-Semantic Mapping with Multi-Task Regression

In ZSL, we aim to recognise action categories Y given visual features X where
training/auxiliary and testing/target categories do not overlap Ytr ∩ Yte = ∅.
The key method by which ZSL is achieved is to embed each category label in Y
into a semantic label embedding space Z which provide a vector representation of
any nameable category. Table 1 summarises the notation used in the subsequent
sections.
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3.1 Training a Visual Semantic Mapping

We first introduce briefly the conventional single task learning using regression
for visual-semantic mapping[12, 9, 11].
Single-Task Regression Given a matrix V describing the embedded action
names4, and per-video binary labels Y, we firstly obtain the label embedding of
any action label for a video clip as zi = Vyi. We then learn a visual-semantic
mapping function f : X → Z on the training categories. Given a loss func-
tion l(·, ·), we learn the mapping f by optimising Eq (1) where Ω(f) denotes
regularization on the mapping:

min
f

1

ntrx

ntr
x∑

i=1

l (f(xi), zi) +Ω(f). (1)

The most straightforward choice of mapping f and loss l is linear f(x) = Wx,
and square error respectively, which results in a regularized linear (ridge) re-
gression problem: l (f(xi), zi) = ||zi−Wxi||22. A closed-form solution to W can

then be obtained by W = ZXT
(
XXT + λntrx I

)−1
. Each row wd of regressor

W maps visual feature xi to dth dimension of response variable zi. Since regres-
sors {wd}d=1···dz are learned independently from each other this is referred as
single-task learning (STL) with each wd defining one distinct ‘task’.
From Single to Multi-Task Regression In the conventional ridge-regression
solution to Eq. (1), each task wd is effectively learned separately, ignoring any
relationship between tasks. We wish to model this relationship by discovering
a latent basis of predictors such that tasks wd are constructed as linear com-
binations of T latent tasks {at}t=1···T . So the dth regression predictor is now
modelled as wd =

∑
t sdtat = sTd A, where sd is the combination coefficient

for d-th task. Denoting multi-task regression prediction as f(xi,S,A), we now
optimise:

min
S,A

1
ntr
x

ntr
x∑

i=1

l(f(xi,S,A), zi) + λΩ(S) + γΨ(A). (2)

Grouping and Overlap Multi-Task Learning An effective method follow-
ing the MTL design pattern above is GOMTL [16]. GOMTL uses a W = SA
task parameter matrix factorisation, where the number of latent tasks T (typi-
cally T < dz) is a free parameter. Requiring the combination coefficients st to
be sparse, via a `1 regulariser, the loss is written as

min
{st},A

T∑
t=1

1
ntr
x

ntr
x∑

i=1

||zt,i − stAxi||+ λ
∑T

t=1 ||st||1 + γ||A||2F (3)

This can be solved by iteratively updating A and S. When A is fixed,
loss function reduces to a standard L1 regularized (LASSO) regression problem

4 To deal with multi-word compound action category names, e.g. “Apply Eye
Makeup”, we apply a simple average, summing the component word vectors [9, 11].
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that can be efficiently solved by Alternating Direction Method of Multipliers
(ADMM) [36]. When S is fixed, we can efficiently solve A by gradient descent.
Regularized Multi-Task Learning (RMTL) The classic RMTL method
[15] models task parameters as the sum of a globally shared and task specific
parameter vector: wt = a0 +at. It can be seen that this corresponds to a special
case of GOMTL’s W = SA predictor matrix factorisation [25]. Here there are
T = dz+1 latent tasks, a fixed task combination vector st = [1 1(t = 1) 1(t =

2) · · ·1(t = dz)]T where 1(·) is the indicator function and A =
[
aT0 a

T
1 · · ·aTdz

]T
.

Explicit Multi-Task Embedding (MTE) In GOMTL Eq (3), it can be
seen that the label embedding zi is approximated from the data by the mapping
stAxi, and this approximation is reached by combination via the latent repre-
sentation Axi. While GOMTL defines this space implicitly via the learned A,
we propose to model it explicitly as li ≈ Axi. This is so the actual projections li
in this latent space can be regularised explicitly, in order to learn a latent space
which generalises better to test data, and hence improves ZSL matching later.

Specifically, we split the GOMTL loss ||zi − SAxi||22 into two parts: ||li −
Axi||22 and ||zi−Sli||22 to learn the mapping to the latent space, and from the la-
tent space to the label embedding respectively. This allows us to place additional
regularization on li to avoid extreme values in the latent space and thus later
improve neighbour matching (Section 3.2). Given the large and high dimensional
video datasets, we apply Frobenius norm on S in contrast to GOMTL’s `1.

min
{st},A,{li}

T∑
t=1

1

ntrx

ntr
x∑

i=1

(
||zt,i − stli||22 + ||li −Axi||22

)
+

λS

T∑
t=1

||st||22 + λA||A||2F + λL

ntr
x∑

i=1

||li||22

(4)

Our explicit multi-task embedding has similarities to [18], but our purpose is
multi-task regression for ZSL, rather than embedding for video descriptions. To
solve our explicit embedding model we iteratively solve L,A and S while fixing
the other two. With the `2 norm on S, this has a convenient closed-form solution
to each parameter:

L = (STS + (λLn
tr
x + 1)I)−1(STZ + AX)

S = ZLT (LLT + λSn
tr
x I)−1

A = LXT (XXT + λAn
tr
x I)−1

(5)

3.2 Zero-Shot Action Recognition

We consider two alternative NN matching methods for zero-shot action predic-
tion that use the MTL mappings described above.
Distributed Space Matching Given a trained visual-semantic regression f ,
we project testing set visual feature xte into the semantic label embedding space.
The standard strategy [9, 11, 12] is then to employ NN matching in this space for
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zero-shot recognition. Specifically, given the matrix of label embeddings for each
target category name Vte, and using cosine distance norm, the testing video xte

are classified by:

y∗ = argmin
y∗
||Vtey∗ − f(xte)|| (6)

where f(xte) = Wxte for STL and f(xte) = SAxte for MTL.

Latent Space Matching MTL methods provide an alternative to matching
in label space: Matching in the latent space. The representation of testing data
in this space is the output of latent regressors lte = Axte (Eq. (4)). To get the
representation of testing categories in the latent space we invert the combination
matrix S to project target category names Vte into latent space. Specifically we
classify by Eq. (7), where (STS)−1ST is the Moore-Penrose pseudoinverse.

y∗ = argmin
y∗
||(STS)−1STVtey∗ −AXte|| (7)

NN matching in the latent space is better than in semantic label space because:
(i) the dimension is lower T < dz, and (ii) we have explicitly regularised the
latent space to be well behaved (Eq. (4)).

4 Importance Weighting

Augmenting auxiliary data with additional examples from other datasets has
been proved to benefit learning the visual-semantic mapping [9]. However, sim-
ply aggregating auxiliary and additional datasets is not ideal as including ir-
relevant data risks ‘negative transfer’. Therefore we are motivated to develop
methodology to prioritise augmented auxiliary data that is useful for a particu-
lar ZSL recognition scenario. Specifically, we learn a per-instance weighting ω(x)
on the auxiliary dataset Xtr to adjust each instance’s contribution according to
relevance to the target domain. Because Importance Weighting (IW) adapts aux-
iliary data to the target domain, we assume a transductive setting with access
to testing data Xte.

Kullback-Leibler Importance Estimation Procedure (KLIEP) We first
introduce the way to estimate a per-instance auxiliary-data weight given the
distribution of target data Xte. This is based on the idea [19] of minimizing
the KL-divergence (DKL) between training ptr(x) and testing data distribution
pte(x) via learning a weighting function ω(x). This is formalised in Eq. (8):

min
ω
DKL(pte(x)|ω(x)ptr(x)) =

∫
pte(x) log

pte(x)

ω(x)ptr(x)
dx

min
ω

∫
pte(x) log

pte(x)

ptr(x)
dx−

∫
pte(x) logω(x)dx

(8)

The first term is fixed w.r.t. ω(x) so the objective to optimise is:
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min
ω
−
∫
pte(x) logω(x)dx ≈ − 1

ntex

nte
x∑

i=1

logω(xi) (9)

Aligning Both Visual Features and Labels KLIEP is conventionally used
for domain adaptation by reweighting instances [19, 33]. In the case of trans-
ductive ZSL, we have the target data Xte and category labels Zte respectively,
although not instance-label association which is to be predicted. In this case
we can further improve ZSL by extending KLIEP to align training and testing
sets in both visual feature and category sense5. Specifically, we minimise the
kullback-leibler divergence between the target and auxiliary in terms of both
the visual and category distributions:

min
ωx,ωz

DKL(pte(X)||ωx(X)ptr(X)) +DKL(pte(Z)||ωz(Z)ptr(Z))

min
ωx,ωz

− 1

ntex

∑
logωx(xte

i )− 1

ntex

∑
logωz(ztei )

(10)

Given both Xte and Zte, we construct the weighting functions as a combina-
tion of Gaussian kernels centered at the testing data and categories. Specifically
we define ω(x, z) = ωx(x) + ωz(z) where ωx(x) and ωz(z) are calculated as in
Eq. (11). Here ω(x, z) extends the previous notation ω(x) to indicate giving a
weight to each training instance given visual feature x and class name embed-
ding z. So if there are ntrx instances, ω(x, z) returns a weight vector of length
ntrx .

ωx(x) =

nte
x∑

i=1

αiφ(x,xte
i ), ωz(z) =

nte
x∑

i=1

βjφ(z, ztei ), φ(x,xte
i ) = exp

(
−||x− xte

i ||2

2σ2

)
(11)

For ease of formulation, we denote a = [α1 · · ·αnte
x

]T , b = [β1 · · ·βnte
x

]T , Φa(x) =

[φ(x,xte
1 ) · · ·φ(x,xte

nte
x

)]T and Φb(z) = [φ(z, zte1 ) · · ·φ(z, ztente
x

)]T . The optimiza-
tion can be thus written as

min
a,b
− 1

ntex

nte
x∑

i=1

log aTΦa(xte
i )− 1

ntex

nte
x∑

i=1

logbTΦb(ztei ), s.t.
1

ntrx

ntr
x∑

i=1

ω(xtr
i , z

tr
i ) = 1 (12)

The above constrained optimization problem is convex w.r.t. both a and b. It
can be solved by interior point methods using the derivatives in Eq. (13):

5 KLEIP with labels was studied by [20], but they assumed the target joint distribution
of X and Z is known. So [20] is only suitable for traditional supervised learning with
labeled target examples of zi and xi in correspondence. In our case we have the
videos to classify and the zero-shot category names, but the assignment of names to
videos is our task rather than prior knowledge.
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∇a = − 1

ntex

nte
x∑

i=1

1

aTΦa(xte
i )
Φa(xte

i ), ∇b = − 1

ntex

nte
x∑

i=1

1

bTΦb(ztei )
Φb(ztei ) (13)

Weighted Visual-Semantic Regression Given per-instance weights ω esti-
mated above, we can rewrite the loss function for both single-task ridge regression
and multi-task regression in Sec 3.1 as ωil(f(xi,A), zi) and ωil(f(xi,S,A), zi)
respectively. All our loss functions have quadratic form, so the weight can be
expressed inside the quadratic loss e.g. ωi||zi −Wxi||22 = ||zi

√
ωi −Wxi

√
ωi||22.

Thus to incorporate the weight information we simply replace the original se-
mantic embedding matrix with z̃i = zi

√
ωi and data matrix with x̃i = xi

√
ωi.

5 Experiments

Datasets and Settings We evaluated our contributions on three human ac-
tion recognition datasets, HMDB51 [3], UCF101 [4] and Olympic Sports [37].
They contain 6766, 13320, 783 videos and 51, 101, 16 categories respectively.
For all datasets we extract improved trajectory feature (ITF) [38], a state-of-
the-art space-time feature representation for action recognition. We use Fisher
Vectors (FV) [39] to encode three raw descriptors (HOG, HOF and MBH). Each
descriptor is reduced to half of its original dimension by PCA, resulting in a
198 dim representation. Then we randomly sample 256,000 descriptors from all
videos and learn a Gaussian Mixture with 128 components to obtain the FVs.
The final dimension of FV encoded feature is 2 × 128 × 198 = 50688 dimen-
sions. For the label-embedding, we use 300-dimensional word2vec [40]. We use
T = ntrc latent tasks, and cross-validation to determine regularisation strength
hyper-parameters for the models6.

5.1 Visual-semantic Mappings for Zero-Shot Action Recognition

Evaluation Criteria To evaluate zero-shot action recognition, we divide each
dataset evenly into training and testing parts with 5 random splits. Using classi-
fication accuracy for HMDB51 and UCF101 and average precision for Olympic
Sports as the evaluation metric, the average and standard deviation over the 5
splits are reported for each dataset.
Compared Methods We study the efficacy of our contributions by evaluating
the different visual-semantic mappings presented in Sec 3.1. We compare MTL-
regression methods with conventional STL Ridge Regression (denoted RR) for
ZSL. For RR/STL, nearest neighbour matching is used to recognise target cate-
gories. Note that the RR+NN method here corresponds to the core strategy used
by [9, 11, 12]. The multi-task models we explore include: RMTL [15]: assumes

6 Ridge Regression (RR) has 15M (300×50688) parameters, whilst for HMDB51 where
T =25, GOMTL and MTE have 1.27M (50688×25+25×300) parameters.
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Table 2. Visual-semantic mappings for zero-shot action recognition: MTL (X) versus
STL (X). Latent matching (X) versus distributed (X) matching

ZSL Model MTL Latent Matching HMDB51 UCF101 Olympic Sports

RR X NA 18.3± 2.1 14.5± 0.9 40.9± 10.1

RMTL [15] X X 18.5± 2.1 14.6± 1.1 41.1± 10.0
RMTL [15] X X 18.7± 1.7 14.7± 1.0 41.1± 10.0
GOMTL [16] X X 18.5± 2.2 13.1± 1.5 43.5± 8.8
GOMTL [16] X X 18.9± 1.0 14.9± 1.5 44.5± 8.5
MTE X X 18.7± 2.2 14.2± 1.3 44.5± 8.2
MTE X X 19.7± 1.6 15.8± 1.3 44.3± 8.1

each task’s predictor is the sum of a global latent vector and a task-specific vec-
tor. GOMTL [16]: Uses a predictor-matrix factorisation assumption in which
tasks’ predictors lie on a low-dimensional subspace. Multi-Task Embedding
(MTE): Our model differs from GOMTL in that it explicitly models and reg-
ularises a lower dimensional latent space. For the multi-task methods, we also
compare the ZSL matching strategies introduced in Section 3.2: Distributed:
Standard NN matching (Eq. (6)), and Latent: our proposed latent-space match-
ing (Eq. (7)).
Results: The comparison of single task ridge regression with our multi-task
methods is presented in Table 2. From these results we make the following ob-
servations: (i) Overall our multi-task methods improve on the corresponding
single-task baseline of RR. MTL regression (RMTL, GOMTL and MTE) im-
proves single-task ridge regression by 5−10% in relative terms, with the biggest
margins visible on the Olympic Sports dataset. (ii) Within multi-task models,
the GOMTL with sparse `1 regularization outperforms RMTL. This suggests
learning the task combination S from data is better than fixing it as in RMTL.
(iii) Our MTE generally outperforms other multi-task methods supporting the
explicit modelling and regularisation of the latent space. (iv) In most cases, NN
matching in the latent space improve zero-shot performance. This is likely due
to the lower dimension of the latent space compared to the dimension of the
original word vector embedding, making NN matching more meaningful [17].

5.2 Importance Weighted Data Augmentation

We next evaluate the impact of importance weighting in data augmentation for
zero-shot action recognition. We perform the same 5 random split benchmark
for each dataset. For data augmentation, we augment each dataset’s training
split with the data from all other datasets. For instance, for ZSL on HMDB51
we augment the training data with all videos from UCF101 and Olympic Sports.
Compared Methods We study the impact of the data augmentation meth-
ods: Naive DA: Naive Data Augmentation [9, 41] simply assigns equal weight to
each auxiliary training sample. Visual KLIEP: The auxiliary data is aligned
with the testing sample distribution Xte (Eq. (8)). Category KLIEP: The
auxiliary categories are aligned with testing category distribution Zte. This is
achieved by the same prodcedure in Eq. (8) by replacing x with z. Full KLIEP:
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Table 3. Data augmentation and importance weighting for ZSL action recognition.

ZSL Model Weighting Model HMDB51 UCF101 OlympicSports

RR Naive DA 21.9± 2.4 19.4± 1.7 46.5± 9.4
MTE Naive DA 23.4± 3.4 20.9± 1.5 49.4± 8.8

RR Visual KLIEP 23.2± 2.7 20.3± 1.6 47.2± 9.3
RR Category KLIEP 23.0± 2.1 20.2± 1.6 51.8± 8.7
RR Full KLIEP 23.7± 2.7 20.7± 1.4 51.3± 9.0

MTE Visual KLIEP 23.4± 2.8 20.8± 2.0 51.4± 9.2
MTE Category KLIEP 23.3± 2.4 20.9± 1.7 50.9± 8.3
MTE Full KLIEP 23.9± 3.0 21.9± 2.7 52.3± 8.1

The distribution of both samples Xte and categories Zte is used to reweight the
auxiliary data (Eq. (12)).
Results: From the results in Table 3, we draw the conclusions: (i) Both the
baseline single task learning (STL) method and our Multi-Task Embedding
(MTE) improve with Naive DA (compare unaugmented results in Table 2), (ii)
The Visual, Category, and Full visual+category-based weightings all improve on
Naive DA in the case of STL RR. (iii) We see that our MTE with Full KLIEP
augmentation performs the best overall. The ability of KLIEP to improve on
Naive DA suggests that the auxiliary data is indeed of variable relevance to the
target data, and selectively re-weighing the auxiliary data is important. (iv) For
KLIEP-based DA, either Visual or Category DA provides most of the improve-
ment, with relatively less improvement obtained by using both together.
Alternative Models We also compare against previous state-of-the-art meth-
ods including those driven by both attributes and word-vector category embed-
dings. DAP/IAP [5]: Direct/Indirect attribute prediction are classic attribute-
based zero-shot recognition models based on training SVM classifiers indepen-
dently for each attribute, and using a probabilistic model to match attribute
predictions with target classes. HAA: We implement a simplified version of
the Human Actions by Attributes model [21]: We first train attribute detec-
tion SVMs, and test samples are assigned to categories based on cosine distance
between their vector of attribute predictions and the target classes’ attribute
vectors. SVE [9]: Support vector regression was adopted to learn the visual to
semantic mapping. ESZSL [42]: Embarrassingly Simple Zero-Shot Learning de-
fines the loss function as the mean square error on label prediction in contrast
to the regression loss defined in other baseline models. SJE: Structured Joint
Embedding [7] employed a triplet hinge loss. The objective is to enforce relevant
labels having higher projection values from visual features than those of non-
relevant labels. UDA: The Unsupervised Domain Adaptation model [22] learns
dictionary on auxiliary data and adapts it to the target data as a constraint on
the target dictionary rather than blindly using the same dictionary. This work
combines both attribute and word vector embeddings.
Comparison Versus State of the Art: Table 4 compares our models with
various contemporary and state-of-the-art models. For clear comparison, we in-
dicate for each method which embedding ((W)ordvector / (A)ttribute) and
feature (our FV, or BoW) are used, as well as whether it has a transductive de-
pendency on the test data (TD) or exploits additional augmenting data (Aug).
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Table 4. Comparison versus state of the art. Embed: Label embedding, Feat: Visual
feature used, Aug: Data augmentation required? TD: Transductive Requirement?

Method Embed Feat TD Aug HMDB51 UCF101 Olympic Sports

MTE W FV X X 19.7± 1.6 15.8± 1.3 44.3± 8.1
MTE + Full KLIEP W FV X X 23.9± 3.0 21.9± 2.7 52.3± 8.1

MTE + Full KLIEP + PP W FV X X 24.8± 2.2 22.9± 3.3 56.6± 7.7
MTE A FV X X N/A 18.3± 1.7 55.6± 11.3

DAP [5] - CVPR 2009 A FV X X N/A 15.9± 1.2 45.4± 12.8
IAP [5] - CVPR 2009 A FV X X N/A 16.7± 1.1 42.3± 12.5

HAA [21] - CVPR 2011 A FV X X N/A 14.9± 0.8 46.1± 12.4
SVE [9] - ICIP 2015 W BoW X X 14.9± 1.8 12.0± 1.4 N/A
SVE [9] - ICIP 2015 W BoW X X 15.6± 0.7 16.5± 2.4 N/A
SVE [9] - ICIP 2015 W BoW X X 19.3± 4.0 13.1± 2.0 N/A
SVE [9] - ICIP 2015 W BoW X X 22.8± 2.6 18.4± 1.4 N/A

ESZSL [42] - ICML 2015 W FV X X 18.5± 2.0 15.0± 1.3 39.6± 9.6
ESZSL [42] - ICML 2015 W FV X X 22.7± 3.5 18.7± 1.6 51.4± 8.3
ESZSL [42] - ICML 2015 A FV X X N/A 17.1± 1.2 53.9± 10.8

SJE [7] - CVPR 2015 W FV X X 13.3± 2.4 9.9± 1.4 28.6± 4.9
SJE [7] - CVPR 2015 A FV X X N/A 12.0± 1.2 47.5± 14.8

UDA [22] - ICCV 2015 A FV X X N/A 13.2± 1.9 N/A
UDA [22] - ICCV 2015 A+W FV X X N/A 14.0± 1.8 N/A

From these results we conclude that: (i) Although data augmentation has a big
impact, our non-transductive and no data augmentation method (MTE) gener-
ally outperforms prior alternatives due to learning an effective latent matching
space robust to the train/test class shift; (ii) The performance of our MTE with
word-vector embedding is strong when compared with DAP/IAP/HAA/ESZSL
even with attribute embedding. Given the same attribute embedding, MTE out-
performs all state-of-the-art models due to the discovery of latent attributes
from the original attribute space; (iii) Moreover, given importance weighting on
auxiliary data, our method (MTE + Full KLIEP) with word-vector embedding
performs the best overall – including against [9] which also exploits data augmen-
tation; (iv) Finally, our method is synergistic to the post processing self-training
approach [11] as well as the hubness strategies [12], which further explains the
advantages of our approach (MTE + Full KLIEP + PP) over other methods.

5.3 Qualitative Results and Further Analysis

Importance Weighting: To visualise the impact of our IW, we randomly
select 4 / 16 classes as target / auxiliary sets respectively. We then estimate the
weight on the 16 auxiliary video classes according to the Full KLIEP (Section 4).
Examples of the auxiliary video weightings are presented in Fig 2. We observe
that auxiliary classes semantically related to the targets are given higher weight
e.g. HandstandPushups→Cartwheel in first sample, SalsaSpin→Hug and Sword
Exercise → Fencing in the second sample. While the visually and semantically
less relevant auxiliary videos are given much lower weights.
Multi-task Embedding: We next qualitatively illustrate single versus multi-
task visual-semantic mappings. Specifically we take 5 classes to be recognized
and visualise their data after visual-semantic projection by tSNE [43]. A compar-
ison between the representations generated by single-task (RR) and multi-task
(MTE) mappings is given in Fig 3. The multi-task embedding discovers data in a
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Fig. 2. Visualisation of Full KLIEP auxiliary data weighting. Left: 4 target videos with
category names. Right: 16 auxiliary videos with bars indicating the estimated weights.
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Fig. 3. Qualitative comparison between single-task ridge regression (RR) and multi-
task embedding (MTE).

lower dimension latent space where NN classification becomes more meaningful.
The improved representation is illustrated by computing the ROC curve for each
target category, as seen in Fig 3. MTE provides improved detection over RR,
demonstrating the better generalisation of this representation.

6 Conclusion

In this work, we focused on zero-shot action recognition from the perspective
of improving generalisation of the visual-semantic mapping across the disjoint
train/test class gap. We propose both model- and data-centric improvements to
a traditional regression-based pipeline by respectively, multi-task embedding –
to minimise overfit of the train data and to build a lower dimensional latent
matching space; and prioritising data augmentation by importance weighting –
to best exploit auxiliary data for the recognition of target categories. Our ex-
periments on a set of contemporary action-recognition benchmarks demonstrate
the impact of both our contributions and show state-of-the-art results overall.
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