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1. KITTI 3D Motion Segmentation Dataset
The introduction of the Hopkins155 dataset [3] has done

much to stimulate 3D motion segmentation research in the
last decade. However, performance levels on this dataset by
recent algorithms have hit a plateau and it is clear that fur-
ther results on this dataset can no longer reveal critical in-
sights into what aspects of the problem we need to improve
on, especially for real-world scenarios where large field of
views and significant camera translations are not uncom-
mon. For this reason, we proposed the KITTI 3D Motion
Segmentation Benchmark (KT3DMoSeg) to spur further re-
search into this problem by the community. This bench-
mark is constructed by selecting short clips from the KITTI
benchmark [1], a dedicated dataset for autonomous driving
research. We select clips according to three principles: (1)
We wish to study sequences with significant camera trans-
lation. Therefore, we choose clips where the camera is
mounted on a moving car. (2) Complex background struc-
ture occurring in the real world is also not well-represented
in existing datasets; therefore we choose clips with large
depth relief and rich clutter. (3) Current motion segmenta-
tion is limited to have at most 3 motions; real world scenes
can have a larger number of motions, and often face an at-
tendant greater likelihood of subspace overlap. We there-
fore select clips with up to 5 motions. Overall, we chose
22 clips from 15 sequences of the KITTI benchmark. Each
clip is between 10-20 frames. Thumbnails of the chosen
clips are given in Fig. 1. We tag each clip with the unique
sequence identifier from the KITTI benchmark, e.g. Seq005
indicates the raw sequence ‘2011 09 26 drive 0005’ of the
KITTI benchmark, and the order in each sequence say,
clip01 indicates the first clip selected from the sequence.

2. Preprocessing and Labelling
In this section, we introduce the details of how we pre-

process and label all clips.

Tracking We first of all extract dense trajectories from
each video clip using the code provided by [2]. Key points

are densely sampled on the whole frame with a gap of 8
pixels. Occlusion is detected by checking the consistency
of the forward and backward flow [2]. Trajectories which
fail the check are considered to be occluded or the underly-
ing flow is incorrect. These trajectories are stopped. In the
next frame, new trajectories are densely sampled in those
areas not occupied by existing trajectories. Finally, we fur-
ther filter out short trajectories less than 5 frames for robust-
ness. The resultant feature trajectories are very dense, on
the order of 1500-5000 points per sequence, and more im-
portantly, the background points account for an overwhelm-
ing majority of all feature points. Examples of raw dense
feature points are shown in Fig. 2. This huge imbalance of
background and foreground point sets renders hypothesis-
driven methods liable to miss small foreground objects, and
also impose high computational load on most algorithms.
To relieve these problems, we sub-sample 10% of the back-
ground points so that the average number of points is be-
tween 200-1000 for all sequences. The distribution of the
number of points for all rigid motion groups is given in
Fig. 3.

Manual Labelling Due to the large number of tracked
points we need to come up with a method that can substan-
tially reduce the effort in labelling. Our method is to only
manually label the foreground moving objects, with the re-
maining unlabelled points all treated as stationary back-
ground points. Clearly, both the foreground and background
obtained in this simple manner have many feature trajecto-
ries that do not belong well, either due to tracking errors or
non-rigidities in the foreground motions. We next propose
an efficient way to remove these outliers.

Outlier Removal We witness many erroneous trajecto-
ries generated by the dense tracking. Typical errors in-
clude point drifting, in particular background points ad-
hering themselves to moving foreground objects. In this
dataset, we identify outliers in a semi-autonomous man-
ner with human-in-the-loop. In particular, we estimate via
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Figure 1. Thumbnails for KT3DMoSeg benchmark.

RANSAC a single fundamental matrix F over two frames
using all points in each rigid motion group defined above.
This is repeatedly done for all consecutive pairs of frames.
The goodness of a trajectory is based on the sum of Samp-
son errors w.r.t the respective Fs along the trajectory and
normalized by the number of frames the point has ap-
peared in. Points with accumulated residuals greater than
Q3 + 7IQR are considered as outliers and removed; in the
above, Q3 is the third quartile and IQR is the inter-quartile
range of all the residuals for points within a single motion.
We do not claim that all bad features have been removed as a
result, just as some small amount of bad feature trajectories
still exist in the Hopkins 155 dataset. A completely auto-
matic and reliable outlier detection module remains elusive,
but addressing this problem is beyond the scope of our pa-
per. To encourage further research on outlier detection for
motion segmentation in-the-wild (i.e. without any manual

intervention), we also publish the untrimmed feature tra-
jectories. An illustration of the individual sequences with
their various rigid motion groups and outliers is presented
in Fig. 4, in which red dots indicate detected outliers.

3. Additional Motion Segmentation Results

We have earlier explored the merits of having the affine
model as one of the views. Even one could argue that the
affine model is just a special case of the homography model
and is therefore redundant, its inclusion could still make
sense numerically as the simpler affine model lends itself to
more stable estimation. This has been corroborated in the
results obtained for the largely small field-of-view Hopkins
155 sequences, presented in the main paper. The relative
merits of including the affine view are far from clear for a
strong-perspective dataset like our KT3DMoSeg. We now

2
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Figure 2. Raw feature trajectories for all sequences in KT3DMoSeg.
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Figure 3. Number of points per motion for all sequences in
KT3DMoSeg.

explore this important issue1. With a two-view scheme (H
and F only), we obtained better performances for both the
Subset Constrained and Co-Regularization fusion scheme,
improving their performance levels from the three-view re-
sults 8.08% and 7.92% to 7.62% and 7.27% respectively.

The detailed quantitative results for individual sequences
obtained from the two-view fusion are depicted in Fig. 5.
The segmentation results for each sequence are presented

1We are not able to do this in time for the main paper submission, but
our results obtained here do not invalidate the conclusions established in
the main paper.

pictorially in Fig. 4, where it is clear that our model takes
advantage of different views successfully and produces re-
sults very close to the ground-truth on most sequences. On
the few occasions our fusion model failed to generate mean-
ingful results, in particular sequence (c), (k), (l) and (f), the
reasons are similar as before. For the first 3 cases, neither F
or H view is able to produce reasonable segmentation. This
is probably due to the freedom in translating along epipo-
lar line rendering F view ineffective, while H failed to link
the background when confronted with non-compact objects
and large depth relief. Sequence (f) failed by splitting the
background and merging the two vehicles (green dots in
“Subset”). The affinity between these two vehicles are in-
herited from the F view (due to its greater susceptibility to
subspace overlap, and that the two cars have rather similar
motions over much of the duration under observation). Un-
fortunately, this erroneous linkage failed to be corrected by
the H view. The competing models, GPCA, SSC, LRR and
LSA, failed on most sequences with few successes. One
possible cause of failure could be due to the difficulty in
filling in the missing data, especially when confronted with
high missing rate (as high as 50%) and violation of the low-
rank assumption (breakdown of affine model, higher num-
ber of motions). All four approaches are inclined to over-
segment the background; this is clearly due to the limitation
of the affine camera assumption which is suitable only for
scenes with weak depth relief.

Finally, we present video demos for the motion segmen-
tation results in the supplementary material as a separate file
named “SuppID4172.mp4”.
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Figure 4. Ground-Truth trajectories for each sequence of KT3DMoSeg.
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Figure 5. Motion segmentation errors of individual sequences with two-view fusion scheme.
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(a) Seq005 Clip01 (b) Seq005 Clip02

(c) Seq009 Clip01 (d) Seq009 Clip02

(e) Seq009 Clip03 (f) Seq011 Clip01

(g) Seq013 Clip01 (h) Seq013 Clip02
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(i) Seq020 Clip01 (j) Seq028 Clip01

(k) Seq028 Clip02 (l) Seq028 Clip03

(m) Seq037 Clip01 (n) Seq038 Clip01

(o) Seq038 Clip02 (p) Seq045 Clip01
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(q) Seq059 Clip01 (r) Seq070 Clip01

(s) Seq071 Clip01 (t) Seq084 Clip01

(u) Seq095 Clip01 (v) Seq113 Clip01

Figure 4. (a-v) Example frames of motion segmentation results for all sequences of KT3DMoSeg.
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