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Image ordinal classification has drawn substantial attention from the
research community due to the ordering relation between image cat-
egories. Recent advancements towards image ordinal classification
lie in applying deep neural networks [convolutional neural network
(CNN)]. Nevertheless, the lack of ordinal training data prevents
deep models from generalising to testing data. In this work, two
multi-view learning approaches are proposed to tackle the insufficient
data issue. On one hand, a multi-view ordinal classification with multi-
view max pooling (MVMP) approach is proposed, in which each image
is randomly blocked with some grids thus creating multiple views of
the original data. All views are then used to train multi-view CNN for
classification. On the other hand, in order to account for the ordinal
relation, the authors propose a double-task learning onMVMP for classi-
fication and average pooling for regression. The task of regression
benefits that of classification, mainly focusing on improving classifi-
cation’s recognition accuracy. The two proposed approaches are vali-
dated on Adience dataset, and show very compelling results. The code
and models will be available online.
Introduction: Image ordinal classification aims to predict image’s
category with ordinal relationship. Examples including age estimation
[1] and image quality estimation [2] belong to this scope. Their classi-
fication labels are discrete but bear incremental relations between
categories. With the proliferation of deep learning, many works
have demonstrated that ordinal classification can be improved with
state-of-the-art deep neural networks [3–6]. Nevertheless, the limited
amount of labelled ordinal data restricts training more complex deep
models. To make matters worse, labelling ordinal image requires
more extensive exposure to image pairs/triplets which is much more
costly than labelling ordinary images, i.e. separating dog and cat.

In this work, we propose an alternative approach towards data aug-
mentation by randomly blocking training images and aggregate different
blocked images via multi-view learning. Random blocking is under-
pinned by the fact that human have no difficulty recognising images
with certain patches masked, as shown in Fig. 1.
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Fig. 1 Image ordinal classification with multiple views. Human can
recognise the age of the girl from different views
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Fig. 2 Pipline of MVMP and MVAP using max pooling and average pooling
(best viewed in magnifier)

Some previous multi-view learning approaches have been extensively
studied [7–9] to exploit data or information from multiple sources.
Conventional multi-view learning models are often categorised into
co-training [10], multi-kernel/subspace learning [11–13]. In general,
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they learn multiple classifiers or feature spaces from different domain
knowledges, and then jointly aggregate them. While in our model,
different blocked images instead of multi-domain knowledges are as
multiple views. That is to say, we embed the multi-view aggregation
step into deep learning model with only one domain knowledge.

Multi-view max pooling (MVMP) for classification: We consider
the problem of learning a mapping f from image feature space X
to label space Y [ RC , i.e. f : X � Y, where C is the number of
the classes. Suppose there are M images in the training set
S = {(x1, y1), (x2, y2), . . . , (xM , yM )} [ (X × Y)M . For each original
image xm, we generate N blocked images Xm = {x1m, x

2
m, . . . , x

N
m} by

randomly masking, as shown in Figs. 1 and 2. The output of the
mapping f for each blocked image is denoted as ŷim = f (xim), ŷ

i
m [ RC .

Next we consider the aggregation of multiple outputs ŷim. A naive
method is to make a vote for the output set {ŷim}i=1...N . Instead of count-
ing the vote directly, for each category, we use max pooling on N views.
Here class probability ŷimc of each blocked image xim is introduced
for multi-view aggregation, and which satisfies

∑C
c=1 ŷ

i
mc = 1 for all

i and m. The aggregated probability ŷmc for each input image xim is
achieved by max pooling all N views, as shown in Fig. 2. The aggre-
gated class probability is written as

ŷmc = max
i

{ŷimc}
N
i=1 (1)

After the aggregation, the sum of the aggregated class probability is
unequal to 1, i.e.

∑C
c=1 ŷmc = 1 for any m. Here we use softmax oper-

ation to normalise the probability ŷmc. Finally, we simply adopt the
cross-entropy loss as the training objective. In contrast to conventional
convolutional neural network (CNN) training pipeline, we propose mul-
tiple views via random blocking and define a novel MVMP training loss
by taking all these views’ class probability into account. The loss is
written as

LMVMP = −
∑M

m=1

∑C

c=1

ymc log (softmax(ŷmc)) (2)

Multi-view average pooling (MVAP) for regression: Image ordinal
classification often refers to two important hints: class category and
ordinal score. In above section, MVMP only considers categorical infor-
mation but without ordinal scores. In this section, we propose MVAP
approach in which regression benefits classification for multi-task
learning.

The ordinal score zm [ R is predicted via a continuous regression
mapping, i.e. written as h : xm � zm. For N randomly blocked images
{xim}i={1, 2, ..., N}, N estimated scores {ẑim}i={1, 2, ..., N} are generated by
the mapping h. Considering that ẑim is scalar value, we use average
pooling to aggregate N outputs for each raw image

ẑm = 1

N

∑

i=1...N

ẑim (3)

For the task of score regression, the L2 loss is adopted as

LMVAP =
∑M

m=1

‖zm − ẑm‖22 =
∑M

m=1

‖zm −
∑

i=1...N

ẑim‖22 (4)

Max pooling and average pooling are applied to MVMP and MVAP,
respectively. However, the former runs max pooling on multiple
categorical distributions ŷim [ RC , and the latter one runs average
pooling on multiple scalar values ẑim [ R, as shown in Fig. 2. They
both use the idea of multi-view learning, but with different operations.

Since training of regression benefits the ordinal classification,
we adopt a multi-task fashion by combining both losses together.
The final training objective LMVMPAP is written as

LMVMPAP = LMVMP + LMVAP (5)

Experimental settings: In this section, we conduct ordinal classification
on general CNN, MVMP, and MVMPAP. Experiments are carried out
on the challenging Adience dataset [3]. This dataset partitions age inter-
val into eight levels {y = n}n=0...7. Clearly classification label ym is same
as regression label zm in (2) and (4). Roughly 26,000 images taken from
2284 persons are included in Adience dataset. We follow the standard
protocol [3] to perform five-fold cross-validation, which are denoted
as Cross0, Cross1, Cross2, Cross3, Cross4.
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Many previous works [1, 3–5] are evaluted on this dataset for ordinal
classification, while few of them are under the same condition and with
the same network. The work [3] defines their own specific network
structure for ordinal group classification. To make our results reproduci-
ble and to be fair, we use VGG-net [4, 5, 14] as the base CNN model. In
the ablation study, different methods are all based on the same
condition.

In the training stage, we initialise the learning rate with 0.001.
We apply an exponential decay function to control the learning rate,
i.e. decaying every 5000 steps with a base of 0.5. For all models, we
freeze some beginning layers from Conv1-1 to Conv2-2. Each
image is divided into 5× 5 grids with the equal size. The proportion
of the dropped grids is 25%, which diversifies Adience dataset
C[5×5×0.25]
5×5 times. We set the number of multi-view instances as 8, i.e.

N = 8. The is to say, MVMP and MVAP take eight randomly
blocked images as input for each original training image. For general
CNN, the batch size is 64, and total epoch number is 150. For
MVMP and MVAP, the batch size is 8, and the total epoch number is
45. The VGG-Net inherits pre-trained parameters from ImageNet.

In the testing stage, blocking operation is clearly not necessary.
In order to use multi-view learning, we also use eight views: four
corners and four edge-corners of the testing image. This approach
often occurs in image pre-processing for data augmentation.

Experimental results and discussion: To demonstrate the effectiveness
of the proposed methods, two comparisons are given in this section. On
one hand, two groups of ablation study are carried out under the same
setting. On the other hand, we compare the proposed methods with
the state-of-the-arts. In fact, our methods are versatile, which also can
be embedded into these state-of-the-art works. The results on ablation
study and state-of-the-arts are shown in Table 1 and 2, respectively.

Table 1: Results of general CNN, grid-CNN, MVMP, and
MVMPAP
Models, %
 Cross0
 Cross1
 Cross2
ELECT
Cross3
RONIC
Cross4
S LET
Mean
CNN
 61.17
 41.66
 57.83
 49.68
 51.45
 52.36
grid-CNN
 62.44
 44.31
 57.80
 49.08
 53.51
 53.43
MVMP
 66.52
 52.24
 62.44
 54.08
 58.35
 58.73
MVMPAP
 68.16
 54.66
 63.88
 57.24
 57.78
 60.34
Bold values indicate best results for different methods on different datasets.

Table 2: Comparison with existing methods
Models, %
 Mean
LBP+FPLBP [1]
 45.10
CNN [3]
 50.70
cumulative attribute [4] + CNN
 52.34
L-w/o-hyper [5] (pretrained on MS-Celeb-1M)
 49.46
L-w/o-KL [5] (pretrained on MS-Celeb-1M)
 54.52
full model [5] (pretrained on MS-Celeb-1M)
 56.01
MVMP
 58.73
MVMPAP
 60.34
Bold values indicate best results for different methods on different datasets.
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Fig. 3 Confusion matrix for image ordinal classification (best viewed in
magnifier)

For all cross-validation splits in Table 1, we observe that both MVMP
and MVMPAP outperform the general CNN with a large margin
(5–13%). This suggests that random masking combined with multi-view
learning is a robust approach towards ordinal image classification.
Moreover, the task of classification and regression are complementary
to each other and benefit the learning when optimised jointly. In order
to further exploit the result, the confusion matrix of three methods on
Cross0 are given in Fig. 3. It can be observed that by taking multi-view
TERS 1st N
learning into consideration, the performance can be improved accord-
ingly. This greatly shows our proposed methods’ robustness.

In order to further show the effectiveness of multi-view learning,
another ablation study is also given. The grid-CNN randomly blocks
some grids for each training image in the same way. For each training
image in each iteration, one blocked image instead of multiple view
images, as the input, is used to train the deep model. For each raw
image it does not combine different views. As shown in the Table 1,
both MVMP and MVMPAP have better performance than grid-CNN.
To be sure, multi-view learning really plays a large role in aggregating
different views.

Besides implementing ablation study, we also compare multi-view
learning approaches with some state-of-the-art methods. As shown in
Table 2, MVMPAP achieves the best of all performance. More impor-
tantly, our model pre-trained on general ImageNet dataset is able to out-
perform the work [5] that is pre-trained on the facial dataset
(MS-Celeb-1M).

Conclusion: This Letter proposes a multi-view learning approach that
randomly dropouts some grids in the training image, and then aggregate
these blocked images. The prediction of each training image is jointly
determined by multi-view learning on multiple blocked images. In
experiments, we implement ablation study and give a comparison
with state-of-the-art methods, showing very competitive results.
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