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A B S T R A C T

Currently image aesthetic estimation using deep learning has achieved great success compared with the
traditional methods by hand-crafted features. Similar to recognition problem, aesthetic estimation categorizes
images into visually appealing or not. Nevertheless, it is desirable to understand why certain images are visually
more appealing, in specific, which part of the image is contributing to the aesthetic preference. In fact, most
traditional approaches adopting hand-crafted feature are, to some extent, able to understand part of image’s
aesthetic and content information while few studies have been conducted in the context of deep learning.
Moreover, we discover that aesthetic rating is ambiguous so that many examples are uncertain in aesthetic level.
This has caused a highly imbalanced distribution of aesthetic ratings. To tackle all these issues, we propose an
end-to-end convolutional neural network (CNN) model which simultaneously implements aesthetic classification
and understanding. To overcome the imbalanced aesthetic ratings, a sample-specific classification method that
re-weights samples’ importance is proposed. We find that dropping out ambiguous image, as common adopted
by recent deep learning models, is a special case of the sample-specific method, and also figure out that as the
weights of the non-ambiguous images increase, the performance is positively affected. In order to understand
what is learned in the deep model, global average pooling (GAP) following the last feature map is employed to
generate aesthetic activation map (AesAM) and attribute activation map (AttAM). AesAM and AttAM respectively
represent the likelihood of aesthetic level for spatial location, and the likelihood of different attribute information.
In particular, AesAM mainly accounts for what is learned in deep model. Experiments are carried out on public
aesthetic datasets and state-of-the-art performance is achieved. Thanks to the introduction of AttAM, the aesthetic
preference is explainable by visualization. Finally, a simple application on image cropping based on the AesAM
is presented. The code and trained model will be publicly available on https://github.com/galoiszhang/AWCU.

1. Introduction

Image aesthetic analysis is becoming an increasingly important
topic in computer vision and multimedia research community due to
its application in image retrieval and image editing. Many attempts
have been made to formulate the aesthetic analysis as a classification
problem [1–3], i.e. categorizing images into discrete levels of aesthetic
quality. Traditionally, support vector machine (SVM) combined with
hand-crafted visual features such as color [4] and SIFT [5] was adopted
to predict aesthetic quality [6]. Though outperforming the specific
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aesthetic features [7], the generic visual feature is not designed for
aesthetic categorization.

As a step further, deep learning has emerged as the prevailing
approach towards image classification problems [8], so does the study
into deep aesthetic understanding [9]. Lu et al. [9] proposed to learn
deep convolutional neural networks directly and developed a two-
branch CNN to account for global and local cues. The deep models have
been proved to be effective on public benchmarks, e.g. A Large-Scale
Database for Aesthetic Visual Analysis (AVA) dataset, and outperform
the conventional hand-crafted generic features.
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Fig. 1. Comparison of images from AVA dataset with high and low aesthetic qualities. A detailed analysis is found in the text.

Though high classification accuracy is achieved, the modern deep
model approaches simply learn weights between different layers in
the network and fail to reveal why certain images are more aesthet-
ically appealing [9,10]. Such reasons can often be explained by an
class activation map (CAM) [11] using the global average pooling
(GAP) which reveal aesthetic supportive areas with high activation
values. Nevertheless, GAP has rarely been studied for the purpose of
aesthetic understanding, in particular visualizing the spatial aesthetic
levels. Discovering aesthetic activation map can help us understand
how the aesthetic preference is determined. Aesthetic activation map
bears similarity with saliency detection [12], all aiming at localizing
interesting areas and areas that are supportive to the action or aesthetic
preference. By simply examining high aesthetic level area, it is very
straightforward to judge if the approach is learning meaningful contents.
Furthermore, localizing the aesthetic area can in turn improve the
evaluation of aesthetic level by excluding the influence from irrelevant
pixels. Finally, localized aesthetic area can be naturally helpful to image
cropping where visually appealing areas are cropped. Therefore, it is
highly desirable to discover from the image which area is the most
supportive to the aesthetic preference.

Apart from the aesthetic activation map, the inherent ambiguity
in aesthetic labeling poses a big challenge to data-driven approaches.
Humans are often good at judging absolutely beautiful or ugly images,
while those images of mediocre quality are often hard to be judged.
We illustrate the case by looking into the examples in Fig. 1. Images
above and below the dashed line are with high and low aesthetic values
respectively. It might be easier for humans to assess the aesthetic values
(either high or low) for the images on the left than the right. This is
because the images on the right are of average scores (close to 5), thus
more ambiguous while the left are of extreme scores (close to either 1
or 10), thus less ambiguous for judging aesthetic quality. Unfortunately,
those clear examples are often rare. As a proof, the state-of-the-art
public aesthetic benchmark, A Large-Scale Database for Aesthetic Visual
Analysis (AVA), exhibits a highly non-uniform distribution over the
aesthetic score as illustrated in Fig. 2. The majority images concentrate

around the intermediate/average values (more than 80%). Regardless of
such imbalanced distribution, the traditional models learn parameters
by treating all available samples equally, therefore, the model could be
overwhelmed by those ambiguous examples. This violates the common-
sense that the more definite data should decide how the model is
trained. Recently, people have been aware of the data imbalance issue in
aesthetic prediction tasks. A common solution is dropping out average
quality images [9,3,13,10]. Conclusions have been made that simply
dropping out average quality images would deteriorate the overall
performance. Without exception, the data imbalance issue cannot be
remedied by the state-of-the-art deep neural networks. This can be easily
understood as the majority of average quality image would dominate
the parameter learning if all training samples are equally treated. As a
result, recent studies have stressed the importance of pre-processing for
imbalanced data in the framework of deep neural networks [14,15].

Finally, the attribute information is often visually ambiguous. Many
of them are not visually detectable, such as Emotive, Abstract,
History, Humorous, Political, Science and Technology,
etc. According to some previous works [10,16], unless rearranging the
attribute categories, the attribute information does little help to AVA’s
aesthetic assessment. Therefore, the attribute categorization module
should not share parameters with aesthetic prediction but instead be
learned separately.

Motivated by these reasons, in this paper, we focus on image
aesthetic binary classification and understanding. We design two sub-
modules that simultaneously classify the visual aesthetic/attribute and
discover spatial locations in the image for supporting aesthetic prefer-
ence and attribute classification (as depicted in Fig. 3). We, in particular,
name the level of spatial activation as aesthetic predictive saliency. Such
map potentially coincides with the interpretation of high/low aesthetic
regions of the image and is supportive to the aesthetic prediction of
images given standard labeling criteria. Finally, to cope with non-
uniform distribution of aesthetic score, we propose a sample-specific
loss function that re-weights each sample’s importance. Specifically, the
samples with average aesthetic scores (score close to 5) would contribute
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Fig. 2. The motivation of sample-specific classification. More than 80% samples
in AVA are located at the intermediate interval of the score label. Sample
specified weight is assigned to each sample to balance its importance in the
training phase.

less to parameter learning while the more clear samples (score close to
1 or 10) should contribute more. Such a re-weighting scheme can be
achieved by a customized weighting function.

Contributions. The objective of this paper is to classify the aesthetic
level of a given image and understand what is learned in a deep model.
The overview of our method is illustrated in Fig. 3, and the main
contributions are as follows:

∙ Motivated by the score distribution of the images in AVA dataset,
we propose a sample-specific classification model to re-weight
the importance of different samples. Ambiguous samples are
given lower weights while clear samples are weighted higher.

∙ Our model simultaneously conducts classification and visualiza-
tion of aesthetic information in an end-to-end fashion. Compared
with previous works, our model is simple and effective, and can
also greatly reduce the number of parameters and memory.

∙ In order to explain what is learned in deep aesthetic classifica-
tion, we jointly train two branches where the second branch on
attribute information (AttAM) is added to compare with AesAM.
On one hand, we discover that AesAM potentially corresponds
to aesthetic predictive salient areas. On the other hand, we find
AesAM partly coincides with AttAM.

∙ We study an application on aesthetic based image cropping. Our
method is different from the previous work in aesthetic cropping
using bottom-up salient object or scanning window.

The rest of the paper is organized as follows. Section 2 discusses two
related topics: image and aesthetic estimation, and image aesthetic crop-
ping. Our proposed model is explained in Section 3. The experimental
results are presented in Section 4.

2. Related work

Image estimation and aesthetic estimation. Image estimation refers to
score an image according to certain assessing criterion. For instance,
when a photo with person is given, how can we estimate his/her
age? In general, image estimation can be formulated as two tasks,
i.e., classification or regression. In the problem with regression task,
huge number of images with accurate labels can hardly be obtained.
Image collection with the annotation of label is really time-consuming
and subjective. Many applications mainly focus on image classification
instead of regression by converting label into different categories. In

fact, psychological evidence [17] showed that humans prefer to conduct
evaluations on qualitative analysis instead of quantitative analysis,
i.e., preferring to different levels. In our experience, human do not
like to describe image aesthetic with exact value in practice. Instead,
qualitative adjectives are usually used, such as excellent, good, and bad.
Therefore, asking subjects to qualitatively evaluate image quality is a
natural way to conduct subjective experiments, and can dramatically
reduce the randomness of the scores and the burden placed on sub-
jects [18].

Before 2012, many previous works on image estimation
[19,20,7,21,22,4] mainly use support vector machine (SVM), random
forest or support vector regression (SVR) on hand-crafted features. In
recent years, CNNs [23,24,8,25,26] models have shown great success in
image classification, which becomes the primary choice for researchers.
Since the popularity of deep learning, image estimation also applies
CNNs models [9,27,28], and it has received great improvement. The
hand-crafted feature is generally complex compared with deep model
learning which benefits from the use of the powerful hierarchical feature
extractors. However, deep CNN models are always just regarded as a
black-box, i.e., inputting an image, and outputting the probability vector
for each class. In fact, the hand-crafted feature in traditional method
sometimes can give us richer information though it cannot get as good
performance as deep learning based methods.

Visual aesthetics estimation is an application on image estimation
(or image classification), and it is also a subjective task. Assessing
aesthetic quality of images automatically is still challenging in the field
of computer vision. For image aesthetic estimation, many data-driven
approaches [29,30,9,19,7,31,6,4] have been proposed to address this
problem. Most of these methods aim to discover a meaningful and
better aesthetic representation, and often formulate the representation
learning as a single and standard classification task such as SVM,
random forest and so on. Since the popularity of deep learning, many
approaches [16,9,3,10,13,32,1,33] are based on CNN, which define
image aesthetic estimation as a binary classification problem : high- or
low-level aesthetic categories.

[9] was the first work using deep learning on aesthetic estimation,
and then all subsequent works are based on this work. [1] shows that
using patches from the original high-resolution images largely improves
the performance. Input images need to be transformed via cropping,
padding and so on, in some CNNs, which often damages image composi-
tion, reduces image resolution, or causes image distortion, thus compro-
mising the aesthetics of the original images. In [3], to solve the problem
of aesthetic distortion on resized image, they present a composition-
preserving deep model method that directly learns aesthetics features
from the original input images without any image transformations.
Specifically, they add an adaptive spatial pooling layer upon the regular
convolution and pooling layers to directly handle input images with
various sizes. To allow for multi-scale feature extraction, they develop
the Multi-Net Adaptive Spatial Pooling ConvNet architecture which
consists of multiple sub-networks with different adaptive spatial pool-
ing sizes and leverage a scene-based aggregation layer to effectively
combine the predictions from multiple sub-networks. [16] proposes to
learn a deep convolutional neural network to rank photo aesthetics in
which the relative ranking of photo aesthetics are directly modeled in
the loss function. This model incorporates joint learning of meaning-
ful photographic attributes and image content information which can
help regularize the complicated photo aesthetics rating problem. [10]
addresses the correlation issue between automatic aesthetic quality
assessment and semantic recognition. A correlation item between these
two tasks is further introduced to the framework by incorporating the
inter-task relationship learning.

Deep learning has received promising results in aesthetic classifica-
tion. However, there are still some open problems. All previous works
treat samples of AVA equally in the loss function. Considering the
uncertain sample’s side effect, we propose a model that can highlight
certain samples while assign a low weight to uncertain samples. In
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addition, binary classification for aesthetic analysis can distinguish high-
or low-quality images, but fails to provide the reason why images are
judged in a certain way. This observation motivates us to consider aes-
thetic visualization rather than simply assigning binary labels. Finally
aesthetic visualization helps image cropping study.

Image cropping. Traditionally, automatic image cropping techniques
follow two mainstreams, i.e. attention-based [34,35] and aesthetics-
based methods [36,37]. Before the popularity of the deep learning,
these works use the hand-crafted feature to get salient areas, and then
crop these areas. To the best of our knowledge, there are few works
that based on deep learning, and can be trained end-to-end. Most
recently, [38] conducts an extensive study on traditional approaches
as well as ranking-based croppers trained on various image features,
which also release a good dataset for image cropping. They employ
the deep feature that was extracted in advance, which does not train
an unified end-to-end network. [3] also gives a result of the image
cropping. They slide a cropping window through the whole image with
the step size of 20 pixels, and then input the cropped window into the
trained model to get its aesthetic score. They choose some high aesthetic
windows as the final cropping result very intuitively. They get a good
performance, while this method may be time-consuming. [39] proposed
an automatic image cropping technique based on aesthetic map and
gradient energy map. Based on the above maps, they give a preservation
model to evaluate the quality of the composition for crops. [32] builds
a connection between aesthetic assessment and aesthetic manipulation,
with a focus on aesthetic-based image cropping. To the best of our
knowledge, this is the first work that uses deep learning to implement
image cropping in an end-to-end fashion.

3. Aesthetic classification and understanding

In this section, we propose the aesthetic level classification and
understanding models, and analyze them from deep network and math-
ematical form. Firstly, we overview the whole structure of the model.
Then, we introduce the sample-weighted aesthetic classifier. Thirdly, we
demonstrate the pixelwise activation of our model to reflect the spatial
aesthetic level predicted by the model. Finally, a simple application to
image cropping is proposed.

3.1. Overview of the proposed model

The proposed network is composed of four parts, feature encoder
(𝑓𝑒𝑛𝑐), global average pooling (𝑓𝑔𝑎𝑝), aesthetic level classifier (𝑓ℎ𝑙) and
aesthetic attribute classifier (𝑓𝑎𝑡𝑡), as shown in Fig. 3. Image classifi-
cation in deep learning generally includes two parts: feature extraction
layers 𝑓𝑒𝑛𝑐 and classifier learning layers 𝑓ℎ𝑙 or 𝑓𝑎𝑡𝑡. In the training phase,
our model includes two branches of sub-network: the aesthetic level
classifier 𝑓ℎ𝑙 with high/low level supervision, and the attribute classifier
𝑓𝑎𝑡𝑡 with attribute category supervision. Given an input image 𝐈, the
network firstly extracts the feature 𝐗 = 𝑓𝑒𝑛𝑐 (𝐈, 𝜃𝑒𝑛𝑐 ),𝐗 ∈ R𝑀×𝑆×𝑆 , where
𝜃𝑒𝑛𝑐 is the encoder parameter, 𝑀 and 𝑆 denote the channel number and
the spatial size of each channel respectively. Then the global average
pooling 𝑓𝑔𝑎𝑝 is applied to vectorize the last convolutional feature map
by summing up each channel’s map. Finally, the vectorized result is
followed by two classifiers 𝑓ℎ𝑙 and 𝑓𝑎𝑡𝑡. All the two parallel operations
can be formulated as

�̂�ℎ𝑙 = 𝑓ℎ𝑙(𝑓𝑔𝑎𝑝(𝑓𝑒𝑛𝑐 (𝐈; 𝜃𝑒𝑛𝑐 ); 𝜃𝑔𝑎𝑝); 𝜃ℎ𝑙)
= 𝑓ℎ𝑙(𝑓𝑔𝑎𝑝(𝐗; 𝜃𝑔𝑎𝑝); 𝜃ℎ𝑙), �̂�ℎ𝑙 ∈ R𝐶×1, (1)

and

�̂�𝑎𝑡𝑡 = 𝑓𝑎𝑡𝑡(𝑓𝑔𝑎𝑝(𝑓𝑒𝑛𝑐 (𝐈; 𝜃𝑒𝑛𝑐 ); 𝜃𝑔𝑎𝑝); 𝜃𝑎𝑡𝑡)

= 𝑓𝑎𝑡𝑡(𝑓𝑔𝑎𝑝(𝐗; 𝜃𝑔𝑎𝑝); 𝜃𝑎𝑡𝑡), �̂�𝑎𝑡𝑡 ∈ R𝐶′×1, (2)

where 𝐶 and 𝐶 ′ are the number of aesthetic level classes and aesthetic
attribute classes respectively, �̂�ℎ𝑙 is the aesthetic level confidence pre-
dicted by 𝑓𝑒𝑛𝑐 , 𝑓𝑔𝑎𝑝 and 𝑓ℎ𝑙, and �̂�𝑎𝑡𝑡 is the aesthetic attribute confidence
predicted by 𝑓𝑒𝑛𝑐 , 𝑓𝑔𝑎𝑝 and 𝑓𝑎𝑡𝑡.

The training process optimizes two tasks with softmax loss and multi-
class sigmoid cross entropy loss using stochastic gradient descent in
an unified framework. We jointly train the model as  = ℎ𝑙 + 𝑎𝑡𝑡,
where , ℎ𝑙 and 𝑎𝑡𝑡 are the total loss, the loss for aesthetic level
classification model and the loss for aesthetic attribute classification
model respectively. The loss function and its gradient are as follows,

 = ℎ𝑙 + 𝑎𝑡𝑡

= − 1
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}, (4)

where 𝐗𝑖 represents the 𝑖th input image, 𝛩 represents general param-
eter of whole model, �̂�𝑖𝑐ℎ𝑙 is the 𝑖th image’s aesthetic level confidence
predicted on the 𝑐th class, 𝑝(�̂�𝑖𝑐ℎ𝑙 = 1|𝐗𝑖) is a softmax function of the
aesthetic level confidence predicted on the 𝑐th class, �̂�𝑖𝑐𝑎𝑡𝑡 is the 𝑖th
image’s aesthetic attribute confidence predicted on the 𝑐th class, 𝜎(�̂�𝑖𝑐𝑎𝑡𝑡)
is sigmoid function of �̂�𝑖𝑐𝑎𝑡𝑡.

In the testing phase, 𝑓ℎ𝑙 branch generates aesthetic level prediction
and aesthetic activation map, and 𝑓𝑎𝑡𝑡 branch generates aesthetic at-
tribute prediction and attribute activation map. We wish to obtain not
only the aesthetic level/attribute prediction but also are interested in
why certain images are predicted in the way they are. For this purpose,
we reverse the order of GAP 𝑓𝑔𝑎𝑝 and the classifiers 𝑓ℎ𝑙 or 𝑓𝑎𝑡𝑡 in the
testing process. These operations of prediction can be concluded as
follows,

𝐗ℎ𝑙 = 𝑓ℎ𝑙(𝐗; 𝜃ℎ𝑙),𝐗ℎ𝑙 ∈ R𝐶×𝑆×𝑆 , (5)

�̂�ℎ𝑙 = 𝑓𝑔𝑎𝑝(𝐗ℎ𝑙; 𝜃𝑔𝑎𝑝) = 𝑓𝑔𝑎𝑝(𝑓ℎ𝑙(𝐗; 𝜃ℎ𝑙); 𝜃𝑔𝑎𝑝), �̂�ℎ𝑙 ∈ R𝐶×1×1, (6)

and

𝐗𝑎𝑡𝑡 = 𝑓𝑎𝑡𝑡(𝐗, 𝜃𝑎𝑡𝑡),𝐗𝑎𝑡𝑡 ∈ R𝐶′×𝑆×𝑆 , (7)

�̂�𝑎𝑡𝑡 = 𝑓𝑔𝑎𝑝(𝐗𝑎𝑡𝑡; 𝜃𝑔𝑎𝑝) = 𝑓𝑔𝑎𝑝(𝑓𝑎𝑡𝑡(𝐗; 𝜃𝑎𝑡𝑡); 𝜃𝑔𝑎𝑝), �̂�𝑎𝑡𝑡 ∈ R𝐶′×1×1, (8)

where 𝐗ℎ𝑙 and 𝐗𝑎𝑡𝑡 represent aesthetic level activation map (AesAM) and
aesthetic attribute activation map (AttAM) respectively. Comparing Eq.
(1) and Eq. (5), and Eq. (2) and Eq. (7), we just reverse the order of GAP
𝑓𝑔𝑎𝑝 and the classifier 𝑓ℎ𝑙(or 𝑓𝑎𝑡𝑡). Both activation maps characterize the
spatial intensity of aesthetic level and attribute predictions, i.e. elements
of the 𝑐th channel of 𝐗ℎ𝑙 (or 𝐗𝑎𝑡𝑡) with high value indicate the corre-
sponding area is contributing to the prediction of the 𝑐th aesthetic level
or attribute. For convenience, we denote both activation maps as the
deep activation map. The example of AesAM and AttAM is shown in
Fig. 3, and we also give their cropping example.

Justifications for GAP. One may argue the global average pooling layer
𝑓𝑔𝑎𝑝, as adopted here, lose too much spatial information compared with
alternative mappings, e.g. fully connected layer. As seen in Figs. 3 and
4, 𝑓𝑔𝑎𝑝 follows the last feature layer with 𝑆 ×𝑆 convolutional layer. The
output of 𝑓𝑔𝑎𝑝 is of the size 𝑀 × 1 × 1. We reckon the global average
pooling is superior for two reasons. First, we choose 𝑓𝑔𝑎𝑝 instead of
fully connected layers for generating class activation map. Intuitively,
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Fig. 3. The pipeline for aesthetic classification and understanding model, including the training and testing procedure.

Fig. 4. The parameter analysis in the vectoring layer: the top and bottom are
corresponding to the parameters of common fully connected layer and 𝑓𝑔𝑎𝑝 in
the vectoring layer.

𝑓𝑔𝑎𝑝 is very similar to fully convolutional layers in which the feature’s
spatial size is equal to the convolutional kernel size 𝑆 × 𝑆. Some
helpful information is lost in 𝑓𝑔𝑎𝑝 because we use the average value to
replace each channel of 𝐗. But for the purpose of deep activation map,
this procedure is necessary (see the detailed analysis in Section 3.3).
Second, as seen in Fig. 4, 𝑓𝑔𝑎𝑝 relies on much fewer parameters than
fully connected layer. For example, in 𝚅𝙶𝙶−𝟷𝟼, the vectoring layer’s
parameters in fully connected layer is 256×14×14×(4096+1) ≈ 206×106,
while the vectoring layer’s parameters in GAP is 256×(4096+1) ≈ 1×106.
In general, our model lower the volume of parameters, which is a key
aspect for deep learning.

3.2. Sample-weighted aesthetic classification

In this section, we propose a sample-weighted aesthetic classification
approach to counter-balance the biased distribution of aesthetic labels.
As seen from Fig. 2. Almost 212092/255520=83% of samples are
allocated in the interval [4.5, 6.5]. That is to say, there are too many
ambiguous samples located at such narrow interval in AVA. To tackle
this issue, we propose to provide each sample with a weighting impor-
tance. Given an image, if the aesthetic score is located at the both ends

a high weight is assigned, otherwise intermediate score will be assigned
with low weight. According to the distribution of the data, we choose
a binary weight function. We note that the distribution of aesthetic
scores is near a Gaussian distribution. An alternative weighting function
could be an inverse-Gaussian function. Nevertheless, such a weighting
function requires either sophisticated calibration of two parameters by
hand, i.e., the mean and variance, or learning from data. Both are not
trivial and may not yield better performance than binary weighting.
In addition, Gaussian distribution does not mean implementing the
Gaussian weighting. Therefore, a weighted softmax loss 𝑤ℎ𝑙 based on
the binary per-sample weight is used to train the model, as given by

𝑤ℎ𝑙 = − 1
𝑁

𝑁
∑

𝑖=1

𝐶
∑

𝑐=1
𝑤𝑖1(𝐲𝑖𝑐ℎ𝑙 = 1) log 𝑝(�̂�𝑖𝑐ℎ𝑙 = 1|𝐗𝑖),

𝑤𝑖 =
{

𝑎, 4 < 𝐴𝑖
𝑠𝑐𝑜𝑟𝑒 < 6

𝑏, 𝑜𝑡ℎ𝑒𝑟𝑠
(9)

where 𝑤𝑖 is the per-sample weight, and 𝐴𝑖
𝑠𝑐𝑜𝑟𝑒 denotes the 𝑖th image’s

aesthetic score. Here we develop a binary weight 𝑤𝑖. In fact, we do not
care about the exact values of 𝑎 and 𝑏 but instead the ratio 𝑏∕𝑎 that
controls the weight assignment.

At the training phase, the proposed total loss  for two branches can
be given as

 = 𝑤ℎ𝑙 + 𝑎𝑡𝑡, (10)

and the gradient of weighted aesthetic level loss function 𝑤ℎ𝑙 on
general parameter 𝛩 can be given as follows,

𝑤ℎ𝑙
𝜕𝛩

= − 1
𝑁

𝑁
∑

𝑖=1

𝐶
∑

𝑐=1
𝑤𝑖1(𝐲𝑖𝑐ℎ𝑙 = 1)

𝜕 log 𝑝(�̂�𝑖𝑐ℎ𝑙 = 1|𝐗𝑖)
𝜕𝛩

. (11)

where 𝑤𝑖 is calculated outside the gradient.

3.3. Deep activation map for aesthetic understanding

In this section, we give an analysis on deep activation map and
aesthetic understanding. As introduced in Eq. (5), Eq. (6), Eq. (7) and
Eq. (8), in the testing phase, we swap 𝑓𝑔𝑎𝑝 and classifier 𝑓ℎ𝑙 (or 𝑓𝑎𝑡𝑡) to
get deep activation map that provides the neuron activation on spatial
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location, i.e., a cue for aesthetic understanding. Our model generates Ae-
sAM (𝐗ℎ𝑙) and AttAM (𝐗𝑎𝑡𝑡) which are used to interpret the importance
of spatial locations from aesthetic prediction and attribute prediction
respectively. The former reveals the area which potentially appears
aesthetic predictive saliency (see Fig. 3), and the latter interprets spatial
locations from attribute information. They are termed as deep activation
map rather than general saliency map [12]. From the point of neuron
activation, they represent salient areas for aesthetic prediction, while
general saliency map [12] mainly focuses on salient object. In fact not
every aesthetic image include an object, such as scene or texture images.
So we call it deep activation map instead of saliency map. On the other
hand, as seen in Fig. 3, the average of AesAM (or AttAM) also represents
the likelihood of aesthetic level (or attribute category).

For a given image 𝐈, the feature map 𝐗 ∈ R𝑀×𝑆×𝑆 can be represented
by 𝐗 = {𝐗(𝑚, ∶, ∶)}𝑚=1,2,…,𝑀 , where 𝐗(𝑚, ∶, ∶) denotes each channel of
𝐗. Because the process of generating AesAM and AttAM are similar, we
only need to discuss AesAM. In fact, 𝑓ℎ𝑙 intends to learn a 𝑀 ×𝐶 weight
matrix 𝐖 = {𝑤𝑐

𝑚}𝑀×𝐶 , where 𝑤𝑐
𝑚 is the weight parameter corresponding

to class 𝑐 for unit 𝑚. Obviously 𝐗(𝑚, 𝑥, 𝑦) represents the activation of
unit 𝑚 in the last convolutional layer at spatial location (x, y). Then for
unit 𝑚, in the training phase, the output of performing global average
pooling is 𝑓𝑔𝑎𝑝(𝐗(𝑚, ∶, ∶)) =

∑

(𝑥,𝑦)𝐗(𝑚, 𝑥, 𝑦). In general, the predicted
confidence probability on the 𝑐th class �̂�𝑐ℎ𝑙 is the weighted sum of
each unit ∑

𝑚𝑤
𝑐
𝑚𝑓𝑔𝑎𝑝(𝐗(𝑚, ∶, ∶)). Essentially, 𝑤𝑐

𝑚 indicates the neuron
activation of 𝐗(𝑚, ∶, ∶) for class 𝑐. In the testing phase, we denote AesAM
as {𝐴𝑐 (𝑥, 𝑦)}𝑐=1,2,…,𝐶 . �̂�𝑐ℎ𝑙 also can be represented as ∑

(𝑥,𝑦)𝐴𝑐 (𝑥, 𝑦). The
detailed relationship is given as follow,

�̂�𝑐ℎ𝑙 =
∑

𝑚
𝑤𝑐

𝑚𝑓𝑔𝑎𝑝(𝐗(𝑚, ∶, ∶)) =
∑

𝑚
𝑤𝑐

𝑚

∑

(𝑥,𝑦)
𝐗(𝑚, 𝑥, 𝑦)

=
∑

𝑚

∑

(𝑥,𝑦)
𝑤𝑐

𝑚𝐗(𝑚, 𝑥, 𝑦)

=
∑

(𝑥,𝑦)

∑

𝑚
𝑤𝑐

𝑚𝐗(𝑚, 𝑥, 𝑦) =
∑

(𝑥,𝑦)
𝑓ℎ𝑙(𝐗(∶, 𝑥, 𝑦)) =

∑

(𝑥,𝑦)
𝐴𝑐 (𝑥, 𝑦) = �̂�𝑐ℎ𝑙 .

(12)

Hence 𝐴𝑐 (𝑥, 𝑦) indicates the importance of the activation at spatial grid
(x, y) leading to the classification of an image to class 𝑐. Eq. (12)
corresponds to Fig. 3, which analyzes the relationship between training
and testing phase.

Intuitively, each unit 𝐗(𝑚, ∶, ∶) is activated by the weight matrix
𝐖 = {𝑤𝑐

𝑚}𝑀×𝐶 . The element of deep activation map 𝐴𝑐 (𝑥, 𝑦) =
∑

𝑚𝑤
𝑐
𝑚𝐗(𝑚, 𝑥, 𝑦) is simply a weighted linear summation of each spatial

location. 𝐴𝑐 (𝑥, 𝑦) points out aesthetic predictive salient areas which
potentially coincide with pleasing/unpleasant areas. Deep activation
map includes two aspects of information: the aesthetic intensity in
spatial location and aesthetic level for the whole map. For the former,
𝐴𝑐 (𝑥, 𝑦) represents the activation of the high and low level aesthetic
image. For the later, the average ∑

(𝑥,𝑦)𝐴𝑐 (𝑥, 𝑦) of all spatial locations
represents the image’s aesthetic level. In the same way, we can get
attribute activation map corresponding to the attribute information.

3.4. Image cropping as an application

After obtaining AesAM and AttAM, we use them to guide image
cropping as a potential application. For each map, we follow the
method [11] to get the bounding boxes, in which they first segment
the activation map using a threshold value that is 30% of the maximum
value, and then take the bounding box that covers the largest connected
component in the segmentation map. For the image cropping, here we
give two alternatives: only using AesAM, and using both AesAM and
AttAM. In the former, we use AesAM to get the bounding boxes (see
the column 2, 3, 4 in Fig. 7). In the latter one, AesAM and AttAM are
used to get two groups of bounding boxes, and which are merged by
calculating the overlapping region of bounding boxes. By adjusting the
threshold large overlapping bounding boxes can be retained. Finally we
can obtain the cropped patches that include both aesthetic level and
attribute information (see the last column in Fig. 7). With the absence of

AttAM, we can still get the cropping from AesAM (see the fourth column
in Fig. 7). However this cropping is hard to explain from aesthetic
content information.

We do not quantitatively evaluate the quality of image cropping
in this work due to: (i) The definition of image cropping ground-
truth is hard itself due to the ambiguity and subjectivity of definition.
(ii) The aesthetic activation map picks up the region which favors
aesthetic prediction. Nevertheless, we believe a quantitative evaluation
aesthetic-based image cropping is an interesting topic and deserve
further investigation in the future.

4. Experiments

We carry on experiments on challenging public aesthetic datasets
AVA to verify the effectiveness of our proposed framework and then
analyze the visualization of aesthetic activation and its application on
image cropping.

4.1. Dataset

The AVA dataset [6] is the largest publicly available aesthetics
dataset providing over 250,000 images in total. Each image in the
dataset was rated by roughly 200 people with the rating score ranging
from 1 to 10, with 10 indicating the highest aesthetics quality. For a fair
comparison, we follow the experimental settings in [9,16], and use the
same collection of training data and testing data: 230,000 images for
training and 20,000 images for testing. For the ease of evaluation, all
images are divided into two categories, i.e., low-aesthetic images with
aesthetic score from 1–5 and high-aesthetic images with score from 6–
10, following the same criteria as in [6,9,16,10].

In addition to the aesthetic ratings, each image is associated with no
more than 2 tags (attributes) annotated out of 66 attribute categories.
We use these attributes to explain what is learned in the deep model.
The frequencies of attributes are highly imbalanced. Some attributes
appear significantly less than others, thus leading to very complicated
correlations between attributes. With few exceptions, attribute classifi-
cation is still rarely touched up until now. In particular, [16] proposed
a mini-dataset Based on AVA for attribute classification by rearranging
the attribute information. In this work, we focus on using attribute for
explaining what is learned in aesthetic level classification model.

4.2. Experimental settings

We implement experiment with three tasks: aesthetic level classifi-
cation, deep activation map generation and image cropping. In aesthetic
classification, we employ Alex-net [8] and VGG-16-net [25] pre-
trained on ImageNet [8,11] as our encoder model 𝑓𝑒𝑛𝑐 respectively. In
the pre-processing phase the original image is resized to a fixed size, and
then a patch is randomly cropped from the resized image. The former
mainly meets the requirement of CNN input, and the latter can reduce
the risk of over-fitting in the training phase. In both training and testing
stages, we resize each images to 256 × 256 pixels and crop five regions
each with 227 × 227 pixels. Four of the croppings are made by aligning
the cropping window along the four corners of the raw image and the
last cropping is made by positioning the window in the mid-center. For
Alex-net, the initial learning rate is set at 0.001, and periodically
annealed by 0.1. For VGG-16, the parameters differ from Alex-net
by setting initial learning rate at 0.0005. Weight decay is set as 0.0005
and momentum is set as 0.9.

After training the network, we use the trained classifier 𝑓ℎ𝑙 and 𝑓𝑎𝑡𝑡
to weight the last convolutional feature map. Then two deep activation
maps: AesAM and AttAM, are obtained. Based on the deep activation
map, we use 𝑓𝑔𝑎𝑝 to get the level confidence. The evaluation criteria is
classification accuracy.

17



C. Zhang et al. Signal Processing: Image Communication 67 (2018) 12–21

Table 1
Comparison of different combination of modules for aesthetic classification.

Model AesCNN AesCNN-W AesAttCNN AesAttCNN-W

Alex-Net 76.82 77.39 76.77 77.18
Vgg-Net 78.60 78.87 76.89 78.62

4.3. Aesthetic classification

In this section, we elaborate how does each module contribute to
the aesthetic level classification performance. Extensive combinations
of two-branch training and weighted training are evaluated for compar-
ison. In specific, we first evaluate the basic model that relies on the 𝑓ℎ𝑙
branch alone to predict aesthetic level. This is a single branch model
which only takes aesthetic supervision. This model is equivalent to
cutting off the attribute prediction branch in Fig. 3. We term this model
as AesCNN. Furthermore, we are wondering if attribute prediction can
benefit learning a better encoder network. For this reason, we study
the full two-branch model as illustrated by Fig. 3. The two-branch
model updates the encoder network by jointly optimizing both the
aesthetic and attribute prediction objectives. We term this two-branch
model as AesAttCNN. Finally, as we notice in Section 3.2, assigning
uniform weights to all training samples is not the optimal solution. To
counterbalance the impact of imbalance training samples, we develop
a sample-weighted aesthetic classification strategy by weighting the
training sample according to its aesthetic score. We term the weighted
models as AesCNN-W and AesAttCNN-W respectively. We report the
performance of above four combinations on AVA dataset in Table 1.

For both alex and vgg, models with weighting strategy are con-
sistently better than without weighting. This suggests the effectiveness
of the proposed weighting method. Although the two-branch model
(AesAttCNN) performs slightly worse than the single-branch model
(AesCNN), we believe the attribute information is a good indication of
the spatial area which supports the aesthetic prediction. In addition,
the attribute activation map provides a baseline for validating the
aesthetic level activation map. In general, all the above comparisons
have demonstrated the effectiveness of weighting method on aesthetic
level prediction.

4.4. Re-weighting the samples

In this section, we analyze how does the choice of re-weighting
parameter affect the performance of aesthetic classification. In specific,
we denote the scheme of re-weighting as 𝑤(𝑎 ∶ 𝑏) where 𝑎 and 𝑏 are the
parameters introduced in Section 3.2. We firstly study a special case of
re-weighting, i.e., dropping out average quality images which has been
studied by [10,3]. Dropping out strategy is equivalent to setting 𝑎 = 0
and 𝑏 = 1 (𝑤(0 ∶ 1)). Furthermore, we evaluate gradually by reducing
the ratio 𝑏∕𝑎 until assigning uniform weights to all samples (𝑤(1 ∶ 1)).
The results for both evaluations are presented in Table 2 and Fig. 5.
It is clear that the dropping out strategy is by no means better than
re-weighting scheme regardless of the parameters (𝑏∕𝑎) we choose. In
addition, by increasing the ratio 𝑏∕𝑎 from 1 to 7, i.e., the range {1, 2,
3, 4, 5, 6, 7}, we observe that recognition accuracy has been improved
gradually (see Fig. 5). Both observations suggest the effectiveness of the
re-weighting scheme.

4.5. Comparison with the state-of-the-art

In this section, we further compare our model with the
state-of-the-art models on AVA dataset. Specifically, we consider
the following models, RDCNN [9], DMA-Net [1], MNA-CNN [3],
Reg+Rank+Att+Cont [16] and Triplet-loss [40]. [9] is the first work
using deep learning on aesthetic estimation, they achieved 74.46%
accuracy comparing to the hand-crafted feature with shallow clas-
sifier which achieves 68.00%. [1] uses patches cropped from the

Fig. 5. Results of different weights: As the ratio 𝑏∕𝑎 increases, its performance
will also increases. After a certain point the performance will decreases.

original high-resolution images improves performance from 74.46%
to 75.41%. [3] presents a composition-preserving deep model method
that directly learns aesthetics features from the original input images
without any image transformations by an adaptive spatial pooling
layer, their performance is 77.40%. [16] proposes to rank aesthetic
level in which the relative ranking of photo aesthetics are directly
embedded in the loss function. This model incorporates joint learning
of meaningful photographic attributes and image content information
which can help regularize the complicated photo aesthetics rating prob-
lem. They achieved 75.48% and 77.33% accuracy on alex and vgg
respectively. [10] addresses the correlation between automatic aesthetic
quality assessment and semantic recognition, in which multiple losses
are combined in the decision layer. They achieve 77.35% and 78.46%
accuracy on alex and vgg.

We report the comparative results in Table 3. As we observe, our
final models, AesCNN-W and AesAttCNN-W, outperform most existing
models. In specific AesCNN-W based on alex and vgg encoder have
achieved 77.39% and 78.87% accuracy, which is the state-of-the-art
result. We note that MTRLCNN achieved rather close performance.
MTRLCNN’s good performance is mainly derived from the exploration
of relationship between the aesthetic classification and aesthetic at-
tribute. Both Reg+Rank+Att and Reg+Rank+Att+Cont combine
score regression, ranking information, attribute information and addi-
tional content information to train the model, and also perform well.
The superiority of Reg+Rank+Att+Cont on Reg+Rank+Att comes
from the additional content preprocessing that is very important for
AVA dataset. In fact, AVA dataset content information exploration is
a very interesting topic. MNA-CNN-Scene gives a novel adaptive spatial
pooling net, while its overall performance is not the best. In general we
observe that our model, without any bells and whistles, achieves the
state-of-the-art result. It is worth to note that only two losses are used
in the proposed method. We believe that our proposed method can be
easily extended to other models and obtain further improvement.

4.6. Deep activation maps

In the testing procedure, we adjust the order of GAP and classifier
to get the deep activation map. Given a test image, we first obtain the
AesAM and AttAM. Here we mainly analyze AesAM’s representation (see
Fig. 6). AesAM incorporates two aspects: aesthetic intensity for spatial
location and global aesthetic level. In Fig. 6, each image’s low level
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Table 2
Comparison of different weight 𝑤 for aesthetic classification.

Model 𝑤(1:1) 𝑤(1:2) 𝑤(1:3) 𝑤(1:4) 𝑤(1:5) 𝑤(1:6) 𝑤(1:7) 𝑤(1:10) 𝑤(0:1)

𝑏∕𝑎 1 2 3 4 5 6 7 10 ∞
Alex-Net 76.82 77.00 77.16 77.24 77.26 77.39 77.39 77.28 76.07
Vgg-Net 78.60 78.70 78.84 78.84 78.81 78.87 78.84 78.80 77.33

Table 3
Comparison of performance between different models on the AVA dataset. Re-
sults are arranged by publishing time.

Model Year AVA Accuracy

Murrary [6] 2012 68.00%
RDCNN [9] 2014 74.46%
DMA-Net-ImgFustat [1] 2015 75.41%
Reg-Rank+Att(alex) [16] 2016 75.48%
Reg-Rank+Att+Cont(alex) [16] 2016 77.33%
MNA-CNN-Scene(vgg) [3] 2016 77.40%
Triplet-Loss [40] 2016 75.83%
MTCNN(alex) [10] 2017 76.15%
MTCNN(vgg) [10] 2017 77.73%
MTRLCNN(alex) [10] 2017 77.35%
MTRLCNN(vgg) [10] 2017 78.46%

AesCNN-W(alex) 77.39%
AesCNN-W(vgg) 78.87%
AesAttCNN-W(alex) 77.18%
AesAttCNN-W(vgg) 78.62%

AesAM and high level AesAM are shown. The high level AesAM points
out images’ high level aesthetic predictive salient areas while the low
level AesAM points out the image’s low level ones. For example, the
face in both left and right in the fifth row looks pleasing from human
perception. Their faces in high level AesAM, instead of low level AesAM,
both have very strong activation though some off-the-target mini areas
still exist. That is to say, pleasing area from human perception generally
coincides with the strong activation in high level AesAM. This idea
corresponds to Eq. (12) and Section 3.3. The aesthetic activation map
is an indicator why certain images are predicted with the aesthetic
high or low level. For instance, the tip of the leave on the last row is
the area with high contrast and contribute the most to high aesthetic
categorization.

The definition of aesthetic, in this work, comes from AVA dataset’s
groundtruth label, i.e., high or low. From the point of psychology,

human perception has a special definition on aesthetic, and different
people may have different opinions on the aesthetic. For instance,
different people may have different aesthetic feelings/judgments on the
photos in Fig. 1. In general, this definition is different from that of
high/low level aesthetic, thus there still exist some slight differences
on the visual understanding. As shown in Fig. 6, for different people,
few AesAM may not coincide with human’s perception very well.
Nevertheless, the correlation between aesthetic activation map and
human perceived pleasing area is yet established. Further psycho-visual
experiments are required to fill this gap.

In addition, we can also consider the global state of the AesAM. On
the left side of Fig. 6, the sum or average of the low level AesAM is
smaller than the high level AesAM, then we predict that this image
is with aesthetic high level. On the right side of Fig. 6, the sum or
average of the low level AesAM is larger than the high level AesAM,
then we predict that this image is with aesthetic low level. Considering
the face in the fifth row again, on the left side of Fig. 6, the average
activation of all pixels in the third column is stronger than the second
column, i.e., ∑(𝑥,𝑦)𝐴𝑙𝑜𝑤(𝑥, 𝑦) <

∑

(𝑥,𝑦)𝐴ℎ𝑖𝑔ℎ(𝑥, 𝑦). While for the face on the
right side, the average activation of all pixels in the fourth column is
weaker than the second column though the face area active very strong,
i.e., ∑(𝑥,𝑦)𝐴𝑙𝑜𝑤(𝑥, 𝑦) >

∑

(𝑥,𝑦)𝐴ℎ𝑖𝑔ℎ(𝑥, 𝑦). It means the surrounding area of
the face is non-pleasing area which have stronger activation than the
face area. In general, what we have learned in AesAM is explainable on
visualization.

Finally, in order to explain AesAM on content information, we give a
comparison between AesAM and AttAM. From Fig. 7, we can see that the
area of the strong activation on the second column (high level AesAM)
will also have strong activation on the fifth column (certain attribute
AttAM). AesAM implicitly coincides with AttAM which includes some
attribute information. That is to say, what we have learned in AesAM is
also explainable on the attribute. As illustrated in Fig. 7, there is some
overlap between the AesAM and AttAM indicating both supervisions are
supported by the similar visual cues.

Fig. 6. Deep activation map aiming at spatial location: (i) Four columns in the left/right correspond to high/low level image, low level activation map(non-appealing),
high level activation map(appealing) and the merged image. (ii) Each image is associated with high/low level AesAM. On the left, the sum of high level AesAM is
larger than the sum of low level AesAM, and otherwise on the right. (Best viewed in color and magnifier.).
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Fig. 7. Deep activation map and its application on image cropping.

In general, high level AesAM coincides with the pleasing area from
both the deep model analysis (Eq. (12)) and human perception (Fig. 6)
though there are still some off-the-target instances. On the other hand,
AesAM partly coincides with AttAM (Fig. 7).

4.7. Application: image cropping

Based on the AesAM and AttAM, we can get the bounding box by
the method [11]. We first segment the AesAM and AttAM using the
threshold value that is 30% of the maximum value in each map, and
then take the bounding box that covers the largest connected component
in the segmentation map. About the image cropping, there are two
choices. On one hand, we can get the cropping result by AesAM alone
(see the fourth column in Fig. 7). On the other hand, we combine two
groups of bounding boxes that includes both the aesthetic and attribute
information. In the experiment, we set the threshold of the intersection

over union (IOU) as 0.3. The detailed description is given at Section 3.4.
If the IOU of two bounding boxes is larger than the threshold, we
select two bounding boxes’ intermediate point, i.e., the average of two
bounding boxes’ coordinates, as the new bounding box’s coordinates.
The concrete examples can be seen in Fig. 7.

The 66 attributes have very complex relation. The scope of attribute
information is very general, in which many attributes come from life
experience or from different point of view such as science and
technique, macro, Emotive, Abstract, History, Humorous,
Political. Each image may belong to multiple attribute classes.
For each image, we choose the top 3 attribute map because of the
complicated relationship between attributes. If the attribute label is
in the top 3, then we set it as the correctly generated AttAM. Some
other attributes are hardly visualized such as humorous, black and
white, still, History and so on. So we consider 49 attributes of
them in the procedure of AttAM generation.
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The cropping results are shown in Fig. 7. From the first column to the
eighth column, they respectively represent: the input image, high level
AesAM, AesAM with its bounding boxes, input image with its bounding
boxes, AttAM, AttAM with its bounding boxes, input image with its
bounding boxes, final cropping result.

5. Conclusion and future work

In this paper, we present a sample-specific aesthetic classification
model that simultaneously implements classification and the deep ac-
tivation map visually. We point out which area or part support the
aesthetic prediction. The aesthetic predictive salient areas potentially
coincides with human perception of pleasing areas. The final aesthetic
prediction is achieved by averaging out the aesthetic predictive areas.
We also compare the AesAM and AttAM to describe that AesAM is also
reasonable on attribute information. This builds the connection between
image aesthetic and image attribute. Overall we not only point out
which area is beautiful, but also know why this part is beautiful.
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