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ABSTRACT

Image ordinal classification refers to predicting a discrete tar-
get value which carries ordering correlation among image cat-
egories. The limited size of labeled ordinal data renders mod-
ern deep learning approaches easy to overfit. To tackle this
issue, neuron dropout and data augmentation were proposed
which, however, still suffer from over-parameterization and
breaking spatial structure, respectively. To address the is-
sues, we first propose a grid dropout method that randomly
dropout/blackout some areas of the training image. Then we
combine the objective of predicting the blackout patches with
classification to take advantage of the spatial information. Fi-
nally we demonstrate the effectiveness of both approaches
by visualizing the Class Activation Map (CAM) and discover
that grid dropout is more aware of the whole facial areas and
more robust than neuron dropout for small training dataset.
Experiments are conducted on a challenging age estimation
dataset – Adience dataset with very competitive results com-
pared with state-of-the-art methods.

Index Terms— Ordinal Classification, Visualization,
Overfitting, Dropout, Data Augmentation

1. INTRODUCTION

The task of image ordinal classification is a special case of
generic classification problem, which takes input data labeled
with ordinal scalar value. The scalar value is often discrete
but carries ordering information. For example, the task of
classifying a dog and a cat needs to separate two different
categories. However ordinal classification, such as age esti-
mation, needs to separate faces of different ages, i.e., all the
objects are faces. Such problem is often cast as a classification
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Fig. 1. Above: image ordinal classification with randomly
blackout patches. It is easy for human to recognize the age
regardless of the missing patches. The masking label is also
useful to image classification. Bottom: grid dropout’s grad-
CAM is better than that of neuron dropout. That is to say, grid
dropout can help learning feature representation.

problem [1]. With the proliferation of convolutional neural
network (CNN), works have been carried out on ordinal clas-
sification with CNN [1][2][3]. Though good performances
have been logged with modern deep learning approaches,
there are two problems in image ordinal classification. On
one hand, the amount of ordinal training data is very lim-
ited which prohibits training complex models properly, and
to make matters worse, collecting large training dataset with
ordinal label is difficult, even harder than labelling generic
dataset. Therefore, insufficient training data increases the risk
of overfitting. On the other hand, less studies are conducted
to understand what deep models have learned on ordinal data
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than other generic classification tasks. Nowadays CNN mod-
els are no longer a black box [4][5][6]. We can understand
their mechanism by visualizing and analyzing neurons’ acti-
vation. However, this is not properly studied in the ordinal
data classification.

To tackle the CNN overfitting issue, dropout was pro-
posed as an efficient solution [7], which randomly drop units
from the neural network during training. We therefore refer
it to neural dropout throughout this work. Neuron dropout
can be viewed as a data augmentation method. From an-
other perspective, it is also regarded as an ensemble method
that includes many sub-networks. Without neuron dropout,
CNN may seriously suffer from the overfitting problem as the
number of training iteration increases. Alternative to neuron
dropout, some existing works implement data augmentation
[8] to expand the size of training data for ordinal data clas-
sification. For example, randomly rotating, translating and
cropping images into many patches are popular data augmen-
tation methods with good performance [8][9]. However, it
may break image’s spatial structure, and lose global infor-
mation. Proper data augmentation method is important for
generalization ability.

Visualizing certain neuron activations has been studied for
revealing the spatial localization of object. Recently, class
activation map (CAM) [4] and gradient-weighted class acti-
vation map (gradCAM) [5] both propose to understand and
visualize class specific information in image classification. In
generic classification, CAM/gradCAM is able to highlight the
most discriminative areas for each class. Thanks to the grad-
CAM visualization, we further identified that neuron dropout
is very likely to overfit to certain parts of the face, e.g. fore-
head, mouth or nose, as illustrated in Fig. 1. However, we
generally agree that a single area of interest can hardly dis-
criminate age which is often correlated with many facial fea-
tures.

Based on above observations, we propose a grid dropout
method that can simultaneously improve the ordinal classifi-
cation accuracy by reducing overfitting and obtain better fine-
grained class activation maps for visualization. Our model
randomly overlays a masking label (as shown in Fig. 1) for
training images, thus expanding the training dataset to avoid
overfitting. More importantly, it does not break spatial struc-
ture of image. Moreover, randomly dropping out certain
patches of the image can reduce the risk of over-weighting
specific areas of image because we believe it is necessary to
take the whole discriminative areas into consideration rather
than focusing on certain small parts. The effect grid dropout
is further supported by the visualization of gradCAM. Lastly,
we incorporate an additional objective/loss, i.e. predicting the
masking labels, into our model. We believe that if the model
is able to learn discriminative features from facial parts, it
should be able to tell the blackout patches. This ability should
in turn benefit the main task of ordinal classification. Our pri-
mary contributions are as follows:

• We propose a grid dropout method that drops some of
the image patches. It reduces the overfitting problem,
and leads to better ordinal classification accuracy.
• We propose to use a masking label to provide super-

vision on the spatial information in the training stage.
It turns out that the use of masking label brings extra
performance gains for ordinal classification.
• gradCAM is adopted to visualize the discriminating ar-

eas of images and it suggests grid dropout is better than
neuron dropout in capturing the global facial features.
• We finally analyze the relationship between neuron

dropout and grid dropout, and reveal that grid dropout
is more suitable for small or medium dataset like age
estimation, while neuron dropout needs large dataset
for training.

2. RELATED WORK

2.1. Ordinal Classification

Ordinal classification takes input data with scalar value labels
that are often discrete but carry the ordering information be-
tween categories. Many applications such as age estimation
[3][10][2] and facial beautiness [9] fall into the task of or-
dinal classification. Image ordinal estimation generally uses
hand-crafted features and individual classifier or regressor in
traditional methods. With the increasing popularity of deep
learning, many recent works apply CNNs [11][1] and achieve
better performance. However, deep learning models usually
need large amount of training data. Collecting sufficient train-
ing data with ordinal label is hard compared with generic
classification problems. There are three directions towards
this issue. Firstly, some previous works [8] use patch-based
method to improve recognition accuracy and reduce overfit-
ting. Though this can greatly augment the dataset, it breaks
the image’s spatial structure only with some local patches.
Secondly, some works are based on multiscale deep model
[8] and different generic models such as residual model [12].
Finally, others apply different loss functions, such as triplet
loss, weighted loss, and multi-task loss and so on.

2.2. Image visualization for Image Classification

In order to understand why CNNs perform so well, many
works [6][13][4][5] are proposed to explain generic image
classification. Toward generic understanding, [6] first intro-
duces a novel visualization technique that gives insight into
the function of intermediate feature layers and the operation
of the classifier. [4] proposes CAM that localizes the specific
object in image, which allows explanations for a specific class
of image classification. [5] comes up with an efficient gener-
alization of CAM, known as gradCAM, which fuses class dis-
criminative property of CAM with existing pixel-space gradi-
ent visualization techniques such as guided back-propagation.
However, there are relatively few works dealing with deep or-
dinal classification, let alone the analysis into understanding
the spatial neuron activation.



3. PROPOSED MODELS

3.1. Grid Dropout

In this work, we propose to exploit randomly generated mask
to blackout certain areas of the image for the purpose of
dropout and data augmentation during the training phase.
Firstly, we partition the image into s × s equal size grids.
Then, a certain proportion of grids are randomly dropped
out. In this way, grid dropout continuously produces mul-
tiple different samples for one image. It enlarges the train-
ing dataset as a data augmentation method. Continuously in-
putting different samples of the same image into a deep model
can greatly reduce overfitting. More importantly, unlike the
random cropping it also maintains the spatial information for
the training image.

3.2. Grid Dropout with Masking Label

CNNs had been seen as a black box for many tasks at early
ages, i.e., inputting image and outputting classification proba-
bilities. Without clear understanding of the mechanism, naive
data augmentation usually loses the spatial information. In
this paper, a method based on masking label is proposed to
preserve such spatial information. In the training process,
each image is fed into the deep model many times with dif-
ferent blackout (dropped) masks. When the image with ran-
dom mask is fed into the model, locations of the brighten cells
(non-dropped) are known. We fully exploit such information
to learn the image’s spatial organization (as shown in Fig. 1).

The masking label records the the locations of the se-
lected and dropped grids. For example, in the middle im-
age of Fig. 1, the second and fourth grids are dropped (the
grid number is counted row-wise). The masking label for
this image is (1, 0, 1, 0, 1, 1, 1, 1, 1). With both category la-
bel and masking label, the deep model can be written as
F : I → (Y,H) given a set of training images and labels
{(In, yn, hn), n = 1, 2, · · · , N}, where yn and hn represent
image category label and masking label. We construct the
total loss as,

L = Lcla(Xn, yn) + βLmask(Xn, hn) (1)

where Xn, Lcla and Lmask are feature vector, loss functions
for ordinal classification and masking classification, respec-
tively. For Lcla and Lmask, we choose softmax loss function
and cross entropy sigmoid loss function, respectively. β is a
hyper-parameter to balance the two losses, and it is set as 0.5
by default.

In addition, ordinal classification can consider both the
class category and labels’ ordinal relationship. The training
objective is therefore composed of a weighted sum of three
losses:

L = Lcla(Xn, yn) + αLreg(Xn, yn) + βLmask(Xn, hn) (2)

where Lcla, Lreg , Lmask represent the softmax loss, Eu-
clidean loss and cross entropy loss, respectively, α and β are
both set to 0.5 in the subsequent experiment.

3.3. Problems of Neuron Dropout for Ordinal Classifica-
tion

Neuron drop-out was proposed in [7] by randomly dropping
out hidden neurons in each training iteration. The drop-out
process resembles a boosting or ensemble technique. Each
training iteration can be seen as a weak classifier, and the
whole training process leads to an ensemble model. With suf-
ficient images, ensemble model can potentially improve per-
formance. However, ensemble classifier boosts large num-
ber of parameters to learn. For example, a neuron dropout
layer with D units can be seen as a collection of 2D possi-
ble sub-networks/weak classifier. In contrast, grid dropout
includes only one classifier while dealing with diversified in-
puts. Therefore, less data is required for training good models
by grid dropout in comparison with neuron dropout.

From the perspective of CNN visualization, the defect of
neuron dropout is revealed by CAM/gradCAM that comes
from rigorous mathematical derivation. Let Fk represents the
k-th channel feature map in the last convolutional layer with
l× l size, and W = {wkc}K×C denotes the weight matrix of
the classification layer, where C is the number of classes, K
is last feature map channel number. Essentially, wkc indicates
the importance of Fk for class c, and can be calculated by the
gradient of yc with respect to feature maps Fk,

wkc =
∑

(m,n)

∂yc

∂Fk(m,n)
(3)

The activation map for each class Sc is denoted as Sc =∑
k wkcFk, where Sc is of l × l size. In neuron dropout, half

neurons are randomly dropped out, i.e. half of wkc are set to
zero. Therefore, the equation (Eq. (3)) no longer holds true
for neuron dropout.

3.4. Analysis on Generalization

The best way to enhance deep model’s generalization ability
is to train it on large dataset. A complex model usually ob-
tains perfect performance on the training images, however, it
is possible to perform bad on the testing images. Our pro-
posed grid dropout aims to improve model’s generalization
by enlarging dataset size.

Generalization error, here representing testing error, is an
important index that evaluates generalization ability. It is
measured by two meaningful components: bias and variance.
In general, bias measures the training loss and variance de-
scribe model’s complexity. When the model becomes com-
plex, its variance becomes large. As a common sense, bias-
variance trade-off between accuracy and stability is always
there in deep learning. Using the grid dropout, each training
image has C [s×s×p]

s×s choices, where s is the number of parti-
tion on row and column and p ∈ [0, 1] is the ratio of selected
grids. Grid dropout is capable of enlarging existing dataset,
and slowing down the variance’s growth (as shown in Fig. 2
and the experiment results in Fig. 4). From Fig. 2, the slow



growth of the generalization error is preferred for ideal train-
ing.
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Fig. 2. In supervised learning, we always want to achieve
optimal status with the blue dashed curve. However, in most
cases, the realizable ones are with blue solid curve, especially
for the condition of insufficient data. (Best viewed in color.)

4. EXPERIMENTS

In this section, we compare the ordinal group classification
performance for neuron dropout [7], grid dropout and grid
dropout with masking label. We also compare gradCAM us-
ing neuron dropout [7] and grid dropout. We use the chal-
lenging Adience dataset [1], which partitions the age interval
into 8 levels. Many previous works [1][2][3] are based on this
dataset, while few of them are under the same conditions and
with the same network model. Some works use pretrained
model with facial dataset such as MS-Celeb-1M [3].

4.1. Dateset

The work [1] uses Adience to perform group classification.
Adience gives different levels yn, in which person ages are
divided into eight levels {0, 1, · · · , 7} (0-2, 4-6, 8-13, 15-20,
25-32, 38-43, 48-53, 60-). Adience includes roughly 26,000
images from 2,284 persons. Images in Adience are uncon-
strained, which makes the experiment very challenging. We
follow the standard protocol [1] to perform a 5-fold cross val-
idation, which are denoted as Cross0, Cross1, Cross2, Cross3,
Cross4. We evaluate different models’ ability by general
recognition accuracy, generalization ability, visualization of
gradCAM.

4.2. Experimental Settings

The work [1] defines their own specific network structure for
ordinal group classification. In order to easily reproduce our
results and to be fair, we use VGG-net [14]. We conduct all
the experiments under the same conditions.

In the model training step, we initialize the learning rate
with 0.001. We apply an exponential decay function, i.e., de-
cay every 5000 steps with a base of 0.5. The batch size is 64,
and we train all the models 150 epochs. In the neuron dropout
experiment, the dropout rate is fixed as 0.5. For all models, we
freeze some beginning layers from Conv1-1 to Conv2-2.
Grid dropout partitions each image into 5 × 5 grids with the
same size. The proportion of the dropped grids is 0.25, which
diversifies Adience C [5×5×0.25]

5×5 times.

For ordinal group classification performance comparison,
we conduct three groups of experiments. The first group of
experiments compare neuron dropout, neuron+grid dropout,
and neuron+grid dropout with masking label. In this group,
VGG-net use pretrained parameters from ImageNet. The sec-
ond set of experiments compare neuron dropout and grid
dropout without fine-tuning for the fully connected layers.
Since we want to understand which model has strong gen-
eralization ability and better performance, training fully con-
nected layers from scratch is a good way. The last set of ex-
periment compares our method with the state-of-the-art works
even though our methods can be extended to these works.

4.3. Neuron Dropout, Grid Dropout and Masking Label

In order to show grid dropout’s efficacy, we compare 3 scenar-
ios, including neuron dropout, neuron+grid dropout, and neu-
ron+grid dropout with masking label. We show the model’s
ability from three aspects: classification accuracy, training
and testing loss curves, and visualization of gradCAM.

Training

Testing
Testing

Training

Fig. 3. Comparison of accuracy and loss curves for the three
methods. (Best viewed in color and magnifier.)

Training

Testing

Testing

Training

Fig. 4. Comparison of accuracy and loss curves for neuron
dropout and grid dropout. (Best viewed in color and magni-
fier.)

In Table 1, the results show that neuron+grid dropout has
higher accuracy than that of neuron dropout, and neuron+grid
dropout with masking label has higher accuracy than that of
neuron+grid dropout. This demonstrates that grid dropout and
masking label both work well and effectively reduce overfit-
ting. Without loss of generality, we randomly choose a split
with training process shown in Fig. 3. Compared with neuron



Table 1. The results of neuron dropout, grid dropout and grid
dropout with masking label.

models Cross0 Cross1 Cross2 Cross3 Cross4 Mean
neuron dropout (%) 61.17 41.66 57.83 49.68 51.45 52.36

neuron+grid dropout (%) 62.44 44.31 57.80 49.08 53.51 53.43
neuron+grid+masking (%) 63.14 45.79 57.53 49.17 53.94 53.91

Table 2. Comparative results of neuron dropout and grid
dropout. Fully connected layers are trained from scratch with-
out fine-tuning.

models Cross0 Cross1 Cross2 Cross3 Cross4 Mean
neuron dropout (%) 54.40 40.28 52.38 41.88 51.56 48.10

grid dropout (%) 60.29 42.08 56.42 48.97 50.91 51.73

dropout, the gap between the training loss and testing loss in
neuron+grid dropout and neuron+grid+masking present more
close trend with the ideal variance curve described in Fig. 2.
From both the accuracy and loss curve, neuron dropout falls
into overfitting very early, and becomes very serious as the
number of iterations increases1. In contrast, grid dropout with
masking label performs the best out of all alternatives with
simple grid dropout already performing very competitively.
In addition, we can see in Fig. 5 the activation map (grad-
CAM) for neuron+grid dropout with mask label (third row)
get more focused on the entire face area than without grid
dropout (second row). This suggests the grid dropout with
masking label is able to discover all discriminative areas for
ordinal classifications.

4.4. Neuron Dropout and Grid Dropout without Fine-
Tuning

In order to analyze the relationship between neuron dropout
and grid dropout, we carry out experiments without fine-
tuning the fully connected layers from existing models trained
on ImageNet. But instead, we just fine-tune all the convolu-
tional layers for the VGG-net, and train the fully connected
layer from scratch. Similar to the comparison in Section
4.3, we give the comparison on accuracy, training and test-
ing loss curves, and gradCAM. The results are shown in Ta-
ble 2, Fig. 4, and Fig. 6. Compared with neuron dropout,
grid dropout achieves better classification result, strong gen-
eralization ability, and better gradCAM. We believe that, the
inferior performance of neuron dropout is attributed to insuf-
ficient training data which can hardly train a more complex
ensemble classifier. From Fig. 6, we observed similar patterns
as in Section 4.3. Interestingly, we notice that neuron dropout
(second row) is more likely to overfit to certain areas of hu-
man face, e.g. the forehead of examples 4-7. In comparison,
our grid dropout (third row) successfully captures the whole
face for almost all examples even under insufficient training
samples.

1For the sake of saving memory, tensorboard automatically sampled 1000
records of loss and accuracy out of 30,000 training iterations with uniform
interval, i.e. we ultimately trained our model for 30,000 iterations.

4.5. Comparison with State-of-the-Arts

The third group of experiments are conducted to demonstrate
our model’s superiority to the state-of-the-art methods. In this
section, since our proposed methods use plain CNN model
without any bells and whistles, we merge ordinal information
to the group classification with an additional regression loss,
i.e., Eq. 2. From Table 3, our final model beats all competitors
with exception on [3]. We believe the advantage of [3] is
gained from pre-training on a large facial dataset MS-Celeb-
1M 2. It is very likely our model will benefit from the same
advantage by doing the same pre-training.

Table 3. A comparison with existing methods.
models Mean

LBP+FPLBP [15] (%) 45.10
Deep CNN [1] (%) 50.70

Cumulative Attribute [2] + CNN (%) 52.34
L-w/o-hyper [3](pretrained on MS-Celeb-1M) (%) 49.46
L-w/o-KL [3](pretrained on MS-Celeb-1M) (%) 54.52
Full model [3](pretrained on MS-Celeb-1M) (%) 56.01

Our proposed model (%) 54.20

5. CONCLUSION

In this paper, we propose a method of grid dropout that ran-
domly drops out some patches of raw images. In order to keep
the image’s structure, masking label is used as target for train-
ing simultaneously. We show our proposed methods from
three aspects: accuracy performance, generalization ability,
and visualization of gradCAM. We also discuss the relation-
ship between neuron dropout and grid dropout and conclude
that, for small or medium dataset, grid dropout is better than
neuron dropout due to less parameters for learning. Finally
we compare our model with state-of-the-art methods and wit-
ness very competitive results.
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