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Abstract—Defocus blur detection is a challenging task because
of obscure homogenous regions and interferences of background
clutter. Most existing deep learning-based methods mainly fo-
cus on building wider or deeper network to capture multi-
level features, neglecting to extract the feature relationships of
intermediate layers, thus hindering the discriminative ability of
network. Moreover, fusing features at different levels have been
demonstrated to be effective. However, direct integrating without
distinction is not optimal because low-level features focus on fine
details only and could be distracted by background clutters. To
address these issues, we propose the Multi-Attention Network
for stronger discriminative learning and spatial guided low-level
feature learning. Specifically, a channel-wise attention module is
applied to both high-level and low-level feature maps to capture
channel-wise global dependencies. In addition, a spatial attention
module is employed to low-level features maps to emphasize
effective detailed information. Experimental results show the
performance of our network is superior to the state-of-the-art
algorithms.

I. INTRODUCTION

Optical imaging systems produce images with defocus blur
when objects are not at the focal region. Defocus blur detection
(DBD) aims to separate out-of-focus regions from an image. It
has widespread applications including but not limited to fore-
ground segmentation, blur magnification, all-in-focus image
generation and depth estimation.

Traditional defocus blur detection methods usually use the
low-level features such as gradient and frequency features
[1], [2] to extract the boundaries. Despite significant progress,
these hand-crafted based methods are usually effective only in
limited scenes where the boundary is clear enough to separate
in-focus and out-of-focus (blurred) regions. Therefore, they
may fail when trying to separate the smooth blurred region
which do not contain obvious boundary from the smooth in-
focus region which is also referred to as homogeneous area.
To address these issues, deep Convolution Neural Networks
(DCNNs) have been applied to defocus blur detection tasks
recently. Zhao et al. [3] proposed the BTBNet which integrates
the semantic cues and structural information by designing a
multi-stream fully convolution network and resolves the mis-
classification of in-focus homogeneous areas. Tang et al. [4]
proposed the DefusionNet which uses recurrent fusion and
refine module to integrate multi-level information. Although
these methods have made significant progress, their networks
do not explicitly consider the interdependencies between
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Fig. 1: Cluttered background (rectangular region) have a
nonnegligible impact on defocus blur detection. Our method
could effectively suppress the interference from background.

features in either spatial or feature channel dimensions. In
addition, they fuse all the detailed features without consid-
ering their different contributions to defocus blur detection.
Hence, their results are sometimes interfered by the cluttered
background, as shown in Fig. 1 and some low-contrast focal
regions are misclassified.

Recent works on saliency detection and semantic segmen-
tation discovered that the high-level and low-level structural
information are complementary for respective tasks, where the
former captures the global context information and the later
captures the spatial structural details [5], [6]. Both the high-
level and low-level information are further integrated for better
feature representation by attention mechanism. Therefore, we
believe it is beneficial to exploit the separation of high-level
and low-level information and introduce attention mechanisms
to fuse features. Specifically, we propose a novel defocus blur
detection method named Multi-Attention Network, which is
illustrated in Fig. 2.

In order to improve the discriminative learning ability of
network, we first introduce a channel-wise attention module to
explicitly model interdependencies of features by calculating
the correlation of feature maps across channels. Such ability
is crucial for accurate detection of low-contrast focal regions
and suppressing the interference of background. As with [4]



the detection maps from high-level features locate an approx-
imate area while low-level features are good at detecting the
sparse and irregular boundaries of defocus regions. Since, low-
level information alone is prone to the noisy clutters from
background and becomes awkward with homogeneous areas,
we further propose to use the high-level information to guide
the learning of low-level features by providing spatial cues.
For this purpose, we introduce a spatial attention module to
guide low-level features with a spatial attention map computed
from high-level features. After capturing the desirable high-
level information and low-level details, the features are fused
together to obtain complementary information and yield final
results.

Our main contributions can be summarized as follows:
• A novel Multi-Attention Network (MultiANet) is pro-

posed to detect defocus regions from images. The end-
to-end deep network extracts the interdependencies of
features to accurately distinguish defocused blur from
homogeneous regions and suppress the interference of
background clutter.

• In order to enhance the discriminative ability of net-
work, a channel-wise attention is performed to explicitly
capture interdependencies between layers. Moreover, a
spatial attention is employed to extract desired details
and suppress the interference from background clutter.
To the best of our knowledge, this work is the first
attempt to exploit an end-to-end deep network combining
channel-wise attention and spatial attention for defocus
blur detection.

• We report the state-of-the-art on two benchmark datasets.
Our method consistently outperforms other state-of-the-
art methods through extensive experiments.

II. RELATED WORK

Defocus Blur Detection (DBD). The traditional methods
are based on hand-crafted features and mostly focus on the
differences of gradients and frequency information between
in focus and out-of-focus regions. Golestaneh and Karam [7]
proposed the method which makes use of the high-frequency
DCT coefficients of the gradient magnitudes from multiple
resolutions to detect blur regions. Yi and Eramian [2] presented
a method which captures the distribution of uniform local
binary patterns in blur and non-blur image regions for defocus
blur detection. By exploiting the gradient domain information
of the corresponding local patches, Xu et al. [8] introduced
a ranking-based metric to detect defocus blur regions. These
traditional techniques are capable of keeping fine image de-
tails. Nevertheless, the hand-crafted features and priors can
hardly capture high-level and global semantic knowledge.
Therefore, their results are unsatisfying when dealing with
complex scenes.
Deep CNNs could effectively extract semantic features and by
combining the multi-level features, the performance of DBD
methods has been improved significantly. Park et al. [9] in-
troduced a unified approach to combine handcrafted and deep
features to detect out-of-focus regions. Zhao et al. [3] proposed

a multi-stream bottom-top-bottom fully convolutional network
to extract more features by constructing wider and deeper net-
work. However, their large number of parameters lead to high
storage and computation consumption. Tang et al. [4] proposed
a defocus blur detection method based on recurrently fusing
and refining the feature maps. Zhao et al. [10] introduced a
cross-ensemble network to enhance diversity of defocus blur
detectors. Tang et al. [11] proposed a bidirectional residual
refining network for blur detection.

Despite the improvement these methods have made, they
neglect to extract the correlations of feature maps and integrate
all detailed features without distinction. Thus their results
sometimes are interfered by the background clutter (as shown
in Fig. 1) and some low-contrast focal region cannot be
differentiated.
Attention Mechanism. Attention module has proved its
effectiveness in various tasks such as image classification,
saliency object detection, video classification. Wang et al. [12]
proposed the non-local network mainly exploring effectiveness
of non-local operation in spacetime dimension for videos and
images. Zhao et al. [5] proposed a pyramid feature attention
work for saliency detection. However, their attention module
neglects to take into consideration the relationship of feature
maps, which is crucial for enhancing the discriminative ability
of network. Fu et al. [6] designed two parallel self-attention
modules to capture long-range dependencies for semantic
segmentation task. Different from previous works, we extend
the attention mechanism to the task of defocus blur detection
and design a Multi-Attention Network which could not only
learn better feature representation, but also adaptively filter
out noise from background. Comprehensive experiment results
demonstrate the effectiveness of our method.

III. METHOD

A. Overview of the MultiANet

Most of fully convolutional network (FCNs) based defocus
blur detection methods do not make full use of the correlations
of feature layers, resulting in relatively-low performance in
defocus blur detection. Moreover, using low-level features
alone could be prone to background clutters and misclassifying
homogeneous areas. To resolve these issues, we develop an
efficient defocus blur detection network taking into consid-
eration the correlation between feature layers and use the
spatial attention of high-level features to guide low-level
feature learning. As illustrated in Fig. 2, the pre-trained model
VGG-16 is employed as the backbone, and we divide the
layers into two groups. Specifically, conv3 3, conv4 3 and
conv5 3 are deeper layers to exploit high-level features. For
the deep layers, we up-sample the conv4 3 and con5 3 to
the size of conv3 3, then combine them by a cross channel
concatenation as the basic high-level features. Meanwhile,
conv1 2 and conv2 2 are shallow layers to exploit detailed
information. The similar up-sample operations are carried out
to obtain the basic low-level features. Then, both low-level
features and high-level features are fed into the channel-wise
attention module separately to extract the interdependencies of
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Fig. 2: Framework of the proposed Multi-Attention Network (MultiANet).

different feature maps. After that, we use the spatial attention
computed from high-level features to guide the learning of
low-level features. This step is necessary because high-level
features mainly characterize the spatial extent while the low-
level features are focused on detailed boundaries and are prone
to background clutters [13], [14]. Finally, we fuse the output
from high-level and low-level features to obtain better pixel-
level predictions.

B. Channel attention module

Existing deep learning based methods focus mainly on
designing a deeper or wider network to learn more discrimi-
native high-level features, while rarely exploiting the inherent
feature correlations in intermediate layers, thus hindering the
representational ability of CNNs. To address the issue, we
employ a channel-wise attention mechanism to emphasize
the important features and suppress disturbing information
by explicitly modeling channel-wise interdependencies. The
module computes responses based on relationships between
different channels and improves the representation capability
of defocus features.

As illustrated in Fig. 3, given a feature X ∈ RC×H×W

,as [6], [12], we firstly reshape it to RC×N , then perform a
matrix multiplication between X and its transpose. After that,
the attention map A is obtained by performing a softmax layer,

aji =
exp(xi · xTj )∑C

i=1(exp(xi · xTj ))
(1)

where aji measures the ith channel’s influence factor on the
jth channel. The more similar two feature maps are, the
stronger the correlation will be. Then we apply a matrix
multiplication between the transpose of X and A to get the
output in shape RC×H×W . Finally, we multiply a scale factor

to the output and add a residual connection to produce the
final output Y.

Yj = α

C∑
i=1

(ajiXi) +Xj (2)

The scale factor α is initialized to zero which means the
module have no influence on the input feature maps at first
and gradually learns a proper weight during the training
process. It can be inferred from (2) that the resulting features
map Y is a weighted sum of all channels and the original
map. Therefore, it models the interdependencies cross feature
channels. The similar feature maps achieve mutual gains, thus
emphasizing desired features, gaining better representation of
defocus features and enhancing the discriminative ability. In
order to make full use of feature correlations, channel-wise
attention module is employed to both high-level and low-level
features.
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Fig. 3: The details of channel attention module (left) and
spatial attention module (right).



C. Spatial attention module

The low-level cues are essential to defocus blur detection
for helping refine the sparse and irregular detection regions.
By utilizing deep CNNs, we could extract fine detailed
information. However, most existing defocus blur detection
methods integrate all features without distinction, which leads
to information redundancy. More importantly, some detailed
information would lead to a performance degradation or even
misclassification. For instance, some out-of-focus regions with
strong detailed information may be mistakenly regarded as in-
focus regions as Fig. 1. To address this issue, we propose a
spatial attention module to adaptively emphasize on desired
low-level features. As illustrated in Fig. 2, the outputs of low-
level channel-wise attention module will be fed into a spatial
attention module which utilizes the high-level spatial cues to
adaptively emphasize low-level details.
Specifically, H ∈ RC×H×W stands for high-level features
and L ∈ RC×H×W stands for low-level features. In order to
increase receptive field without additional computation cost,
two consecutive atrous convolutions are applied to extract
spatial information (see Fig. 3). After mapping the extracted
features to [0,1] by a sigmoid function, we obtain the final
attention weight map Z. The final output of the low-level
features L̃ is acquired by weighting low-level feature L with
spatial attention weight map Z as,

L̃ = L · Z = L · f(H,W) (3)

where W refers to parameters in spacial attention block. It
can be inferred from (3) that low-level features are explicitly
rescaled by the spatial attention module. Large weight would
be assigned to the low-level features which play important
role in refining the boundaries. Hence, according to high-level
semantic cues, the spatial attention module could focus more
on effective details and filter out some background clutter.

IV. EXPERIMENT

A. Datasets and Implementation Details

Datasets. In our experiments, we use two publicly available
datasets with pixel-level annotations. Shi’s Dataset consists of
704 partially defocus blurred images. We divided 704 defocus
blur images with pixel-level masks into two parts, i.e., the first
604 images for training and the last 100 images for testing as
[4]. DUT is a new dataset for defocus blur detection proposed
by [3] which consists of 600 training images and 500 test
images with pixel-level annotations. It is a more challenging
datasets because images have multiscale focused area, low
contrast focal regions and strong background clutter.
Implementation Details. The overall architecture is illustrated
in Fig. 2. Our network uses the VGG-16 [15] as backbone. The
cross-entropy loss is applied to the output of this network.
Two public datasets have limited number of training sets
which is insufficient to train a deep neural network. In order
to improve generalization and reduce overfitting, we utilize
data augmentation to the origin images by randomly flipping,
cropping, resizing and rotating. Our model is trained on the

Nvidia GTX Titan Xp. The whole network is optimized by
Adam algorithm and the learning rate is initialized to 0.0004.
The training batch size is set to 6 and the whole training
process on Shi’s datasets takes roughly 3 hours.

B. Comparison with the state-of-the-art methods

We compare our method with other 8 state-of-the-art ap-
proaches, including ASVB [16], DBDF [1], SS [17], LBP [2],
HiFST [7], BTBNet [3], DeFusionNet [4] and BR2Net [11].
Same as other state-of-the-art methods [4], four widely used
metrics are used to quantitatively evaluate the performance of
the proposed network: F-measure curves, mean absolute error
(MAE), F-measure score (Fβ) and precision-recall curves. As
to the last three methods, we directly copy the results from
the authors’ project page.
Quantitative Comparison. Tab. I and Fig. 4 provide the
quantitative evaluation results of the proposed method and
eight state-of-the-art defocus blur detection approaches in
terms of PR curve, F-measure curve, Fβ and MAE criteria. It is
observed that our method consistently outperforms our coun-
terparts in terms of Fβ and MAE criteria, which demonstrates
the effectiveness of our method. In particular, our method gets
larger improvement compared with the best existing approach
on DUT dataset. DUT dataset is a difficult and challenging
defocus blur detection dataset, which contains many complex
natural scenes images and strong background clutter. The
proposed method can effectively enhance the discriminative
ability of network and obtain desired detail features, therefore
yields better detection results.
Running Efficiency Comparison. Apart from the fine results,
our method is also efficient. We use one GPU(Nvidia GTX
Titan Xp) in both training and testing process. The average
running time for an image of different methods are shown in
Tab. II. Our method is faster than other methods for detecting
the out-of-focus regions.
Visual Comparison. Fig. 5 provides a visual comparison of
our method and other state-of-the-art approaches. We observe
that our method gest the best detection results. Specifically, the
background clutter are effectively suppressed. By enhancing
the discriminative ability of network, the low-contrast focal
regions can be accurately classified. With the help of the com-
bination of attention modules, desired structural information
has been extracted and the network yields much more clear
boundaries.

C. Ablation Study

Effectiveness of Attention Modules. To analyze the impact
of different modules in our network, we carry out ablation
studies on the DUT dataset which has more complex scenes
and more images. For fair comparison, we perform the same
data augmentation operations on all networks. In order to
evaluate our Multi-Attention Network (MultiANet), we use
the high-level features from VGG as the baseline. We denote
HL, LL, HCA, LCA and SA for High-level features, low-level
features, high-level channel-wise attention module, Low-level
channel-wise module and spatial attention module respectively.



TABLE I: Quantative comparison of F-measure and MAE scores. The best two results are shown in red and blue colors,
respectively.

Datasets Metric ASVB [16] DBDF [1] SS [17] LBP [2] HiFST [7] BTBNet [3] DeFuNet [4] BR2Net [11] Ours

Shi’s Fβ 0.731 0.841 0.787 0.866 0.865 0.892 0.917 0.918 0.951
MAE 0.636 0.323 0.298 0.186 0.232 0.105 0.116 0.132 0.096

DUT Fβ 0.747 0.802 0.784 0.874 0.866 0.887 0.922 0.943 0.950
MAE 0.651 0.369 0.296 0.173 0.302 0.190 0.115 0.104 0.078

TABLE II: Average running time(s) for an image of different methods on different datasets.

Methods ASVB DBDF SS LBP HiFST BTBNet DeFuNet BR2Net Ours

Datasets Shi’s 2.04 214.83 2.76 57.34 2576.24 25 0.094 0.087 0.062
DUT 1.59 110.37 1.20 30.38 1169.57 25 0.056 0.053 0.050

Fig. 4: Quantitative comparisons of the proposed approach and 8 state-of-the-art approaches on two datasets. The first two are
the PR curves and F-measure curves of different methods on Shi’s dataset respectively. The last two are the PR curves and
F-measure curves of different methods on DUT dataset respectively.

Results are reported in Tab. III. Obviously, the proposed
network with all the components yields the best results on
both MAE and Fβ and each of the component is contributing
positively to the overall framework.
Visualize Channel Attention Effectiveness. To further
demonstrate the impact of the channel-wise attention module
we compare the results of MultiANet without high-level
channel attention module and the proposed MultiANet with
results shown in Fig. 6. Apparently, some low contrast in-
focus regions are misclassified (first row) and the cluttered
background interferes the detection result (second row). This
is because the network without channel attention is unable to
extract the inter-dependencies of features thus hindering the
discriminative ability.
Visualize Spatial Attention Effectiveness. Similarly, we
visualize the impact of spatial attention module by comparing
the propose network without spatial attention with the fully
MultiANet. As shown in Fig. 7, the network without spatial
attention is unable to adaptively select correct spatial extent,
hence, its detection results are influenced by the homogeneous
areas, e.g. the smooth out-of-focus areas on macarons.

V. CONCLUSION

We propose a novel method named Multi-Attention Net-
work (MultiANet) for accurate and efficient defocus blur
detection. Specifically, a channel-wise attention module is
employed to both low-level features and high-level features for
better feature representation. A spatial module is applied to the
low-level features, so as to focus more on desired details and
suppress the background clutter. Finally, MultiANet obtains

TABLE III: Ablation analysis of the different components
combinations.

Methods MAE Fβ

VGG HL(Baseline) 0.132 0.924
VGG HL+LL 0.101 0.937
VGG+HL+LL+HCA 0.092 0.938
VGG+HL+LL+HCA+SA 0.088 0.944
VGG+HL+LL+HCA+LCA 0.089 0.938
VGG+HL+LL+LCA+SA 0.087 0.940
VGG+HL+LL+HCA+LCA+SA 0.078 0.950

the final defocus blur map by fusing low-level and high-
level features. Extensive experimental results demonstrate our
method outperforms other state-of-the-art methods in terms of
both accuracy and efficiency.
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