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Abstract

State-of-the-art methods for semantic segmentation are
based on deep neural networks that are known to be data-
hungry. Region-based active learning has shown to be a
promising method for reducing data annotation costs. A
key design choice for region-based AL is whether to use
regularly-shaped regions (e.g., rectangles) or irregularly-
shaped region (e.g., superpixels). In this work, we address
this question under realistic, click-based measurement of
annotation costs. In particular, we revisit the use of super-
pixels and demonstrate that the inappropriate choice of cost
measure (e.g., the percentage of labeled pixels), may cause
the effectiveness of the superpixel-based approach to be
under-estimated. We benchmark the superpixel-based ap-
proach against the traditional “rectangle+polygon”-based
approach with annotation cost measured in clicks, and show
that the former outperforms on both Cityscapes and PAS-
CAL VOC. We further propose a class-balanced acquisition
function to boost the performance of the superpixel-based
approach and demonstrate its effectiveness on the evalu-
ation datasets. Our results strongly argue for the use of
superpixel-based AL for semantic segmentation and high-
light the importance of using realistic annotation costs in
evaluating such methods.

1. Introduction

In recent years, we have witnessed the rapid develop-
ment and great success brought by deep learning on many
computer vision tasks, where the state-of-the-art is domi-
nated by deep learning methods. A key ingredient to the
success of deep learning is the availability of large corpora
of annotated training data. In practice, however, the anno-
tation cost for labeling such a corpus can be prohibitively
expensive, especially for dense prediction tasks like seman-
tic image segmentation where pixel-wise labeling is needed.
Active learning (AL) offers one approach to address this

annotation burden by selecting only the most informative
samples for labeling.

Previous AL methods for semantic image segmenta-
tion can be broadly classified into image-based methods
[35, 31, 8] and region-based methods [23, 4, 6] according
to the granularity of data selection for annotation. Image-
based approaches consider an entire image as a sample
while region-based approaches divide images into non-
overlapping patches and consider each patch as a sample.
Further design choices for the region-based approach are
the shape and size of the regions chosen for annotation.
Previous work suggests that region-based selection outper-
forms image-based selection due to the increase in data vari-
ability [23]; we thus focus on region-based AL in this work.

A fundamental consideration in navigating these de-
sign choices for region-based AL is the cost of annotat-
ing a sample. Many works have measured annotation cost
in terms of the number (or percentage) of labeled pixels
[35, 31, 8, 4, 18], which is not reflective of the polygon-
based annotation process used in practice [7]. As an al-
ternative, click-based annotation costs have been proposed
[23, 6] to better capture the true annotation costs. More
concretely, three types of clicks are usually involved in the
polygon-based annotation process: 1) polygon clicks for
annotating vertices of the polygon enclosing the object-of-
interest; 2) intersection clicks for annotating the intersection
points between object boundaries and region boundaries; 3)
class clicks for assigning a single class label to each seg-
ment within the region. The number of polygon and inter-
section clicks required will likely be higher for regularly-
shaped regions (squares, rectangles) that typically do not
respect actual object boundaries. These clicks can be re-
duced (even avoided) if AL is conducted with boundary-
preserving regions, such that the annotator only needs to
focus on assigning classes for each region.

This consideration of annotation costs motivates the
use of (irregularly-shaped) superpixels in region-based AL
[18, 30] instead of regularly-shaped squares or rectan-
gles. Superpixel algorithms divide an image into non-



overlapping irregularly-shape regions by grouping percep-
tually similar pixels together, such that superpixels preserve
natural object boundaries well. As a result, most pixels
within a superpixel are from the same semantic category.
This enables the use of a light-weight annotation scheme
where each superpixel is annotated by only one class la-
bel that represents the majority of the pixels, reducing the
need for polygon and intersection clicks. As illustrated in
Fig. 1, annotating approximately the same number of pix-
els, “rectangle+polygon”-based method requires more than
10 clicks, while the superpixel-based method only requires
1 click.

However, the advantages of superpixel-based approaches
for region-based AL remain unclear. Recent work sug-
gests that the advantage of superpixel-based approaches
over pixel-based approaches is marginal [18], possibly be-
cause pixel-based annotation costs were used in the evalua-
tion. On the other hand, while more realistic click-based an-
notation costs have been used to benchmark rectangle-based
methods [23, 6], comparisons between superpixel-based
methods and rectangle-based methods have not been per-
formed. It therefore remains unclear if a superpixel-based
approach can indeed reduce annotation cost compared to
the traditional “rectangle+polygon” based approach. We
address this question in this work, by revisiting the use
of superpixels for region-based AL, performing analyses
on the effect of region shape and size on region-based AL
with more realistic, click-based measurements of annota-
tion costs.

Our contributions can be summarized as follows:

• We revisit the superpixel-based approach for AL
in semantic segmentation with realistic click-
based annotation cost taken into consideration, and
demonstrate its effectiveness over the traditional
“rectangle+polygon”-based approach.

• We investigate how region size affects the superpixel-
based scheme and the traditional rectangle-based
scheme respectively, and show that the former outper-
forms for a wide range of region sizes.

• We propose a class-balanced acquisition function to
further boost the performance of the superpixel-based
approach by favoring the selection of informative sam-
ples from under-represented object categories.

2. Related Work

2.1. AL for Deep CNNs

Based on the the criteria used to select samples, AL ap-
proaches for deep CNNs can be grouped into three cate-
gories: uncertainty-based, diversity-based and the hybrid
methods. Uncertainty-based approach defines and measures

Figure 1: Annotating a traffic light by “rectangle+polygon”
based approach (bottom left) vs. the superpixel-based ap-
proach (bottom right). The former requires quite a few
polygon clicks (red dots), intersection clicks (blue dots) and
class clicks (pink points), while the latter only requires a
class click. If the annotation cost is measured in pixels, the
two schemes perform closely, yet when measured in clicks,
the latter is much more efficient.

the quantity of uncertainty, and select samples that maxi-
mize this quantity. Common measures of uncertainty in-
clude entropy [28], variation ratio [13], best-versus-second
best margin [17] and the mutual information between pre-
dictions and model posterior (BALD) [15]. Instead of using
single-model outputs, Gal et al. [14] proposed a Bayesian
framework and showed how Monte Carlo (MC) Dropout
can be used to obtain posterior uncertainties over network
predictions. Beluch et al. [2] used an ensemble of CNNs to
derive uncertainty estimates, which outperformed the MC
dropout uncertainties. Yoo and In [36] measured uncer-
tainty by loss. Sener and Savarese [26] formulated AL as a
core-set selection problem and showed that minimizing the
core-set loss is equivalent to the k-centre problem defined
over a geometric based similarity function between images.
Such approach relies on a feature space that requires extra
engineering and suffers from the curse of dimensionality
when the feature dimension goes high. Yang et al. [35]
used a hybrid framework where samples were first sorted
by uncertainty and then Core-Set was applied to the top-k
samples to select a subset covering diverse cases. Kuo et
al. [19] showed that using the ensemble uncertainty alone
performed favourably with the hybrid approach proposed in
[35]. In this work we build upon uncertainty-based methods
that have been shown to work well for region-based AL.

2.2. AL for CNN-based Semantic Segmentation

AL for semantic segmentation can be classified into
image-level approaches [35, 31, 8] and region-level ap-



proaches [23, 4, 6] based on the granularity of sample se-
lection. The former considers the entire image as a sam-
ple while the latter divides an image into patches and con-
sider each patch as a sample. In the first category, Yang
et al. [35] utilized model predictions and feature descrip-
tors extracted from the trained CNN model to select a set
of samples that were most representative and uncertain to
annotate. Sinha et al. [31] learned a latent space by a varia-
tional auto-encoder (VAE) and an adversarial network, and
the prediction score of the adversarial network was used to
select samples. Dai et al. [8] also employed VAE to learn a
latent space that was used to perform gradient-guided sam-
pling. Among the region-based approaches, methods can be
further grouped into regularly-shaped region (e.g., rectan-
gles) based [23, 4, 6] and irregularly-shaped region (e.g., su-
perpixels) based [18, 30] approaches. CEREALS [23] fused
entropy with cost estimates to select regions that were infor-
mative yet cheap to annotate. Casanova et al. [4] used rein-
forcement learning to learn the optimal policy for region se-
lection. MetaBox+ [6] selected regions based on prediction
quality and cost estimates. Kasarla et al. [18] conduct se-
lection and annotation at the superpixel level and used CRF
to refine the superpixel labels. ViewAL [30] proposed a
viewpoint entropy formulation that exploited the prediction
consistency between different views in multi-view datasets
and performed uncertainty computation and selection at su-
perpixel level. The work most related to ours is [18] where
superpixel-based selection is used for autonomous vehicle
datasets like Cityscapes. However, [18] did not consider
realistic annotation costs (clicks), and their results suggest
that the advantage of superpixel-based selection without
post-processing is marginal. It thus remains unclear if the
superpixel-based approach can indeed reduce annotation
costs compared to the widely-used “rectangle+polygon”-
based approach. Our work addresses this gap.

2.3. Annotation Cost Measurement in AL

Most research in AL assume that the annotation cost is
fixed for all samples, and report model accuracy as a func-
tion of the number of labeled samples. However, in domains
where labeling cost may vary, a reduction in the number of
labeled samples does not guarantee a reduction in annota-
tion cost. Settles et al. [27] conduct annotation experiments
on four dataset in image and text domains, and showed that
annotation costs can vary considerably across instances. For
image segmentation, [19] observed that times needed for
pixel-wise labeling vary up to 3 orders of magnitude for in-
tracranial hemorrhage segmentation.

AL methods for semantic segmentation are typically
benchmarked by the achievable accuracy at some percent-
age of labeled pixels [35, 31, 8, 4, 18], which may not be
a fair comparison as methods require the least amount of
labeled pixels may not transfer into the the least amount of

annotation time in practice. CEREALS [23] benchmarked
various methods with the number of clicks that annota-
tors used to draw a polygon, and revealed that informa-
tive regions were more expensive to annotate and selec-
tion strategies aiming to select highly-informative regions
may not outperform the random baseline significantly if ac-
tual annotation cost was considered. CEREALS considered
three kinds of clicks: polygon, intersection, and box clicks.
MetaBox+ [6] argued that box clicks were not necessarily
required with a suitable labeling interface, while class clicks
used to select a class label for each polygon should be con-
sidered. We consider the same types of clicks as in [6].

2.4. AL for Class Imbalance

Class imbalance refers to the scenario where some
classes are represented by significantly fewer instances than
others. Real world applications often face this problem as
some events or objects are naturally rare in quantity. As
most machine learning algorithms optimize the overall clas-
sification accuracy, the majority classes may overwhelm
training and sacrifice the performance on minority classes.
Solutions to this problem include resampling, hard example
mining [29] and loss weighting [21]. These methods ad-
dress the class imbalance at the training stage, while Ertekin
et al. [10] showed that AL was capable of solving this prob-
lem implicitly by selecting informative samples to annotate
at the data collection stage. Explicit handling of class im-
balance in AL is often achieved by estimating the pseudo la-
bel of an unlabeled sample which decided whether this sam-
ple should be preferred in selection. The pseudo label can
be obtained by the prediction of the current model or some
class-wise similarity measure. Brust et al. [3] addressed
the class imbalance problem in object detection by estimat-
ing the posterior of each class based on pseudo labels and
weighting each instance by the inverse of the posterior to fa-
vor under-represented classes. Zhang et al. [37] proposed a
similarity-based method for image classification under class
imbalance. Kasarla1 et al. [18] represented each category
with a feature vector, assigned each pixel to its most simi-
lar category and performed selection independently for each
class. Similar to [18], we also tackle the class imbalance
problem in semantic segmentation. However, instead of
discretely assigning annotation budgets to each class, we
take a soft weighting strategy based on the pseudo labels of
superpixels. This avoids nearest neighbor search in high-
dimensional feature space and extra engineering for good
features.

2.5. Superpixel Generation

Superpixels are an over-segmentation of an image
formed by grouping perceptually similar pixels. It is an es-
tablished low-level representation of image data that greatly
reduces the number of image primitives for subsequent al-



gorithms. Traditional superpixel generation algorithms can
be broadly classified into graph-based and clustering-based
approaches. Graph-based approaches model an image as
a graph where pixels are graph nodes and edges denote
affinities between connected pixels. Algorithms falling into
this category include Normalized Cuts [25], Felzenszwalb
and Huttenlocher (FH) [12] and the entropy rate superpix-
els (ERS) [22]. Clustering-based approaches group pix-
els using clustering techniques, which progressively refine
an initial clustering of pixels until some criteria are met.
Some popular algorithms in this category include SLIC [1],
SEEDS [34] and LSC [20]. A more comprehensive sur-
vey can be found in [32]. Traditional methods rely on some
hand-crafted features to generate superpixels and segmenta-
tion ground truth is not used. Recently, SEAL [33] and SSN
[16] employed deep CNNs to learn the features for super-
pixel generation, where the ground truth semantic segmen-
tation label for each pixel is needed to compute the learning
loss. In this work, we stick to the traditional methods, i.e.,
SEEDS, to avoid additional labels for training.

3. Methodology
In this section, we first present an overview of the pro-

posed method. Then, we detail each component of the
framework, including superpixel generation (Section 3.2),
class-balanced sampling (Section 3.3) and annotation cost
measurement (Section 3.4).

3.1. Overall Framework

Given a set of unlabeled images, our method first di-
vides each image into superpixels. Next, we perform class-
balanced sampling to select a batch of informative samples,
which are then annotated by an oracle. Here, we use the
ground truth semantic segmentation label to simulate such
annotation process. Instead of the traditional polygon-based
labeling, we use a dominant labeling scheme where each su-
perpixel is assigned only a single class label. The model is
then retrained using all the data labeled so far and the pro-
cess is repeated until the annotation budget is exhausted.

3.2. Superpixel Generation

Traditional region-based AL approaches simply divide
an image into non-overlapping rectangles, which do not re-
spect natural object boundaries. Superpixels, on the other
hand, are image primitives that group similar pixels and
preserve object boundary well. In this work, we employ
off-the-shelf SEEDS algorithm [34] due to its good perfor-
mance in ensuring class coherency within each superpixel
while maintaining object boundaries and ready-to-use in-
terface (publicly available in OpenCV1). In short, SEEDS is

1https://docs.opencv.org/3.4/df/d6c/group_
ximgproc_superpixel.html

a clustering-based superpixel generation algorithm that be-
gins with a uniform partition of image and iteratively refines
the results by exchanging neighboring blocks in a coarse-to-
fine manner. Note that our proposed pipeline is a universal
one and any other superpixels algorithms may be employed.

3.3. Class-Balanced Sampling

Given the pre-computed superpixels, we next describe
our strategy for selecting samples for query. AL is typically
an iterative process where a batch of samples are annotated
at each iteration to train a new model. At iteration t, we
denote the model as Mt, unlabeled set as Ut, each sample
as s, an acquisition function a(s,Mt) is a function that the
AL system uses to query the next sample:

s∗ = argmax
s∈Ut

a(s,Mt). (1)

The most commonly used acquisition function is based
on uncertainty, e.g., entropy [28], variation ratios [13],
etc. In this work, we employ the uncertainty measure pro-
posed in [17], i.e., Best-versus-Second Best (BvSB) mar-
gin, which is less affected by small probability values of
unimportant classes. Mathematically, BvSB is defined as
the ratio between the posteriors of the two most confident
classes:

u(x,Mt) =
p(y = csb|x,Mt)

p(y = cb|x,Mt)
, (2)

where csb and cb is the class label for the second largest and
the largest posterior probability predicted by Mt, respec-
tively. The uncertainty of region s is then defined to be the
average uncertainty of pixels within this region:

u(s,Mt) =

∑
x∈s u(x,Mt)

|{x : x ∈ s}|
. (3)

Nevertheless, we notice that in practice, there are many
datasets with imbalanced class distributions where simple
acquisition function based on uncertainty above is incapable
of querying samples from rare object categories. As a re-
sult, the performance of these under-represented classes sig-
nificantly degrade due to insufficient training samples. To
overcome this, we propose a simple yet effective strategy to
favour samples from the under-represented classes during
the selection process. Specifically, we first obtain an esti-
mation of class distribution by assigning a dominant label
(the class label of the majority pixels within this region) to
each region:

Do(s) = argmax
c∈C
|{x : l(x) == c and x ∈ s}|,

l(x) = argmax
c∈C

p(y = c|x,Mt),
(4)

where C is the set of class labels. This gives the posterior of
class distribution as follows:

p(cls) =
|{s : Do(s) == cls}|∑
c∈C |{s : Do(s) == c}|

. (5)

https://docs.opencv.org/3.4/df/d6c/group_ximgproc_superpixel.html
https://docs.opencv.org/3.4/df/d6c/group_ximgproc_superpixel.html


We then assign a weighting to the uncertainty measure of
s based on the class posterior and propose the following
class-balanced acquisition function:

a(s,Mt) = u(s,Mt)e
−p(Do(s)). (6)

Given an annotation budget of K clicks, the algorithm
to select a batch of samples is summarized in Algorithm 1.
Here cost(s) represents the real annotation cost for sam-
ple s, the computation of which is described in Section 3.4.
Note that the cost is not used for sample selection as CE-
REALS [23] and MetaBox+ [6] did, but is used to simulate
the actual annotation process where the annotator will stop
labeling when the annotation budget is exhausted.

Algorithm 1: Batch-Mode Active Selection
Input : unlabeled set of regions Ut, labeled set of

regions Lt−1 selected in previous batches,
model Mt trained on Lt−1, annotation
budget of K clicks for batch t

Output: Output selected set of regions Bt
Bt = ∅;
total cost = 0 ;
while total cost < K do

s∗ = argmax
s∈Ut

a(s,Mt);

Bt = Bt ∪ s∗;
Ut = Ut \ s∗;
total cost = total cost+ cost(s∗);

end

3.4. Annotation Cost Measurement

The iterative process of AL terminates when the annota-
tion budget is exhausted. In practical setting, the annotation
budget may be measured in hours or expenses. Some pre-
vious work proposed to use the amount of labeled pixels as
a substitute of the real annotation cost. More recently, CE-
REAL [23] and MetaBox+ [6] advocate the use of clicks
as a more realistic measurement of annotation cost. In this
work, we follow [6] to consider three types of clicks that an
annotator uses to label an image, the computation of which
is detailed as below (refer to Fig.1 for an illustrative exam-
ple for each click type).
Polygon clicks (cp): These are the clicks used for delineat-
ing the object boundaries. Given a region, cp for annotat-
ing this region is equal to the number of polygon vertices
needed for this region.
Class clicks (cc): These are the clicks that define the class
for each annotated polygon. To estimate cc for a region,
we extract the connected components based on its ground
truth label map and cc is equal to the number of connected
components.

Intersection clicks (ci): These are the clicks incurred in
the “rectangle+polygon”-based approach and caused by the
intersection of the region boundaries and natural object
boundaries. A region boundary pixel is considered an inter-
section point if the ground truth label of this pixel is differ-
ent from the pixel below (for vertical boundary) or the pixel
on the right (for horizontal boundary). ci of a region is equal
to the total number of intersection points on its boundaries.

We consider two annotation schemes used to annotate a
segmentation dataset and the involved clicks are discussed
as below.
Precise labeling (Pr): This is the traditional polygon-based
annotation scheme. To obtain pixel-wise precise labeling,
the annotator needs to first draw a polygon that delineates
each object segment and then assign a class label to each
polygon. Moreover, the annotator needs to indicate the
points where natural object boundary intersects with the re-
gion boundary. Therefore, this type of labeling involves all
the three types of clicks, i.e., cp + cc + ci.
Dominant labeling (Do): This is the labeling scheme we
employ for the superpixel-based approach, i.e., the entire
region is assigned the dominant label as defined in Eq. (4).
Such an annotation scheme is of low cost and only incurs
cc. Moreover, we do not apply any post-processing step to
refine the assigned dominant labels as done in [18].

4. Experiments
4.1. Experimental Setup

Evaluation Datasets We evaluate on two popular datasets
for semantic segmentation: Cityscapes [7] and PASCAL
VOC 2012 [11]. Cityscapes contains 19 object categories,
with a training/validation/testing split of 2975/500/1525.
PASCAL VOC 2012 contains 20 object categories, with
1464 images for training and 1449 images for validation.
For both datasets, we perform AL on the training set and
evaluate the resulting model on the validation set.
Segmentation Model We employ DeepLabv3+ with
Xception-65 backbone [5] as our segmentation model in all
the experiments. We follow the default setting by setting
the atrous rates to 6, 12 and 18, the output stride as 16 and
the decoder output stride as 4.
Fully Supervised Baseline AL methods are usually bench-
marked by the amount of annotation used to achieves 95%
accuracy of the fully supervised baseline. To train the
fully supervised baseline, we use a base learning rate of
0.007 and polynomial learning rate decay policy (i.e., lr =
(1 − iter

max iter )
power where power = 0.9). The evaluation

is run in single-scale on the full-size image. For Cityscapes,
we trained for a total of 60k iterations with a batch size of 4
and input size of 769 × 769. The mIoU of the fully super-
vised baseline is 76.48%(0.31%) (mean and standard devi-
ation of 3 runs). For PASCAL VOC 2012, we trained for a



total of 30k iteration with a batch size of 12 and input size
of 513× 513. The mIoU of the fully supervised baseline is
77.80%(0.32%).

Batch Training Details For each batch of AL, we select
and annotate samples which is equivalent to an annota-
tion budget of 100k clicks for Cityscapes and 10k clicks
for PASCAL VOC 2012. The segmentation model is then
trained on the combination of newly annotated samples and
the samples annotated in previous batches. The training
hyper-parameters remain the same as the fully supervised
baseline.

Region Generation We consider two types of regions in the
experiment:

(A) Rectangles (Rec): The image is uniformly divided into
non-overlapping rectangles of size m×m. We fix m = 32
in Section 4.3 and investigate the effect of different region
sizes in Section 5.

(B) Superpixels (Sp): We employ SEEDS algorithm
implemented in OpenCV to divide the image into non-
overlapping superpixels. Before applying SEEEDS, we
first apply histogram equalization to the image to im-
prove its contrast, followed by converting to HSV color
space. We use the following hyperparameters for the
SEEDS algorithm: prior = 3, num levels = 5,
num histogram bins = 10, and double step is en-
abled to slightly improve the quality of the superpixels. The
number of superpixels is specified in such a way that it is the
same as the number of rectangles when dividing the image
using the Rec scheme.

4.2. Benchmarking Methods

We benchmark with the following selection strategies:
(A) Random: This scheme randomly selects a region.

(B) Uncertainty: This scheme selects a region using the
uncertainty-based acquisition function defined in Eq. (3).

(C) ClassBal: This scheme uses the class-balanced acqui-
sition function defined in Eq. (6), i.e., uncertainty weighted
by the inverse of class posterior for region selection.

4.3. Experimental Results

In this section, we conduct extensive experiments with
various combination of selection strategies, region types,
and annotation types to study the effect of each component.
The results are presented and discussed below.

Cityscapes The AL results on Cityscapes are presented in
Fig. 2. Fig. 2a shows our main results with annotation cost
measured in clicks, and Fig. 2b plots the same results with
clicks converted into percentage of labeled pixels.

We first observe that Sp+Do outperforms Rec+Pr in
Fig. 2a, but loses its advantage in Fig. 2b. This demonstrates
that the effectiveness of the superpixel-based approach can

only manifests itself significantly when measured in clicks,
and the traditional measurement of labeled pixel percent-
age may under-estimate its performance. We also notice
that Rec+Pr outperforms Rec+Do. This indicates that domi-
nant labeling scheme is not effective for rectangular regions,
as such regular shape regions do not respect object bound-
ary and can not be effectively represented by the dominant
class. Finally, we observe that ClassBal outperforms Un-
certainty and Random. This demonstrates that ClassBal can
select better samples for model training.

PASCAL VOC 2012 The AL results on PASCAL VOC
2012 are shown in Fig. 3. As PASCAL VOC does not
release the click annotation data, we estimate the polygon
clicks by fitting a polygon to the segmentation mask: first
we run the alphashape algorithm2 with alpha=0.5 to rep-
resent the ground truth segment with a concave hull, and
then run the RDP algorithm [24, 9] with epsilon=1 to re-
duce the number of points on the concave hull. The result-
ing points are used to compute the cost cp for this dataset
(more details in supplementary material).

Similar to Cityscapes, Sp+Do outperforms Rec+Pr in
Fig. 3a, but this is not the case in Fig. 3b. This reiter-
ates the importance of benchmarking in realistic annotation
cost to properly evaluate the effectiveness of the superpixel-
based approach. We also notice that in Fig. 3a, Uncer-
tainty+Rec+Pr cannot beat Random+Rec+Pr, yet in Fig. 3b,
the two curves almost overlap. We found that the number of
regions selected by Uncertainty can be up to 40% less than
Random when using the same amount of clicks. This sug-
gests that regions selected by Uncertainty are more costly
to annotate, and Uncertainty-based sampling does not nec-
essarily beat Random sampling when realistic annotation
cost is considered. Finally, we observe that ClassBal per-
forms closely to Uncertainty. This may be due to the fact
that PASCAL VOC has much more balanced class distri-
bution than Cityscapes and thus the weighting assigned by
ClassBal is similar for all the classes.

Comparison of Annotation Cost for 95% Accuracy To
further demonstrate the effectiveness of the superpixel-
based approach, we compare the annotation cost required
to obtain 95% accuracy on Cityscapes. We compare with
the various methods reported in [6] as the annotation cost
is computed in the same way and the same segmentation
model is used. As indicated by “Box” in the name, meth-
ods in [6] follow the traditional “rectangle+polygon” ap-
proach, and “Box+” additionally employ a cost estimation
model during sample selection. We convert the absolute
clicks into percentage by dividing it by the total number of
clicks, which is counted as the number of clicks used to
annotate Cityscapes in the original manner, i.e., the entire
image is annotated by polygon, and thus is not affected by

2https://pypi.org/project/alphashape/

https://pypi.org/project/alphashape/
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Figure 2: Active learning results on Cityscapes. We report the mean and standard deviation of 3 runs. (a) Benchmarking
at fixed amount of annotation budget measured in clicks. (b) Plot the same results with annotation cost measured in the
percentage of labeled pixels.
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Figure 3: Active learning results on PASCAL VOC 2012. We report the mean and standard deviation of 3 runs. (a) Bench-
marking at fixed amount of annotation budget measured in clicks. (b) Plot the same results with annotation cost measured in
the percentage of labeled pixels.

the number of regions. The results are summarized in Ta-
ble 1. It can be seen that even Uncertainty+Sp+Do outper-
forms other methods by a small margin, demonstrating the
effectiveness of the proposed Sp+Do scheme. The class-
balanced sampling further reduces the annotation cost by
2%.

5. Discussions
Effect of Region Size Region size is an important hyper-
parameter for region-based AL. Obviously smaller region
size incurs more class clicks (cc) and intersection clicks (ci).
Table 2 lists the number of clicks for different region sizes

on Cityscapes training set. It can be seen that as region
becomes smaller, the total number of clicks increases sig-
nificantly, suggesting that annotating the entire dataset in
smaller region is not cost-effective. However, the goal of
AL is to maximize model accuracy given a limited anno-
tation budget that is far from enough to annotate the entire
dataset. Smaller region size allows the annotation budget
to be allocated to label more diverse content. Though the
amount of selected pixels is reduced, the increase in pixel
diversity can still boost model accuracy. Fig. 4 demon-
strates the effect of region size on Cityscapes given a fixed
budget of 200k clicks. It can be seen that both the proposed



Table 1: Comparing budgets to obtain 95% accuracy on Cityscapes for different methods.

Random+Rec+Pr Uncertainty+Rec+Pr EntropyBox[6] MetaBox[6]

19.63% 15.70% 19.61% 14.48%

EntropyBox+[6] Metabox+[6] Uncertainty+Sp+Do ClassBal+Sp+Do

10.25% 10.47% 9.81% 7.85%

Sp+Do and the traditional Rec+Pr benefit from a smaller
region size. This is consistent with the results presented
in CEREALS [23]. We also note that Sp+Do outperforms
Rec+Pr for a wide range of region sizes from 16 × 16 to
128 × 128. When region size goes beyond 128 × 128, the
performance of Sp+Do deteriorates as the superpixel cannot
be effectively represented by its dominant label anymore.
Pushing the region size to the extreme, i.e., pixel-level se-
lection, is also not optimal, as the same amount of clicks
can be used to annotate more pixels if the spatial coherency
of neighboring pixels is utilized.

Table 2: The number of clicks for different region sizes on
Cityscapes training set. 32×32 corresponds to 2048 regions
and 128× 128 corresponds to 128 regions per image. Note
that cp is slightly decreasing for smaller region size as we do
not count the box corners and polygon clicks on the region
boundary have been counted into ci.

Polygon(cp) Class (cc) Intersection (ci) Total

Rec+Pr
32× 32 4,170,635 8,952,624 4,987,933 18,111,192

128× 128 4,610,236 1,325,930 1,239,878 7,176,044
Image 4,756,857 338,302 0 5,095,159

Sp+Do
2048 0 6,092,788 0 6,092,800
128 0 380,800 0 380,800
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Figure 4: Effect of region size on Cityscapes val subset us-
ing the Random baseline.

Effect of Class Balanced Sampling To demonstrate the ef-
fect of the proposed class-balanced sampling, we compare
the class-wise IoU. Fig. 5a shows the IoU gain of Class-
Bal+Sp+Do over Uncertainty+Sp+Do at batch 4 (i.e., 400k

clicks) and Fig. 5b shows the class distribution of superpix-
els according to the ground truth dominant label. It can be
seen that class-balanced sampling boosts accuracy on less
common and especially rare classes, e.g., train, motorcy-
cle, traffic light and traffic sign, while accuracy on popu-
lar classes, e.g., road, building, terrain, sky, is largely unaf-
fected.
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Figure 5: Effect of class-balanced sampling on Cityscapes.
(a): the IoU gain of ClassBal+Sp+Do over Uncer-
tainty+Sp+Do at batch 4 (i.e., 400k clicks). (b): the class
distribution of superpixels according to the ground truth
dominant label.

6. Conclusions
In this work, we revisit the superpixel-based approach

for AL in semantic segmentation taking into account
more realistic click-based annotation costs. We show that
the effectiveness of the superpixel-based approach can-
not be properly evaluated by the percentage of labeled
pixels, and demonstrate its advantage over the traditional
“rectangle+polygon”-based approach on both Cityscapes
and PASCAL VOC under realistic cost measurement. We
also proposed a class-balanced sampling scheme to further
boost the performance of the superpixel-based approach, re-
sulting in a further 25% reduction in annotation cost over
the recent Metabox+ method. Our results strongly argue for
the use of superpixel-based AL for semantic segmentation
and highlight the importance of using realistic annotation
costs in evaluating such methods in the future.
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els compared to state-of-the-art superpixel methods. IEEE
transactions on pattern analysis and machine intelligence,
34(11):2274–2282, 2012. 4

[2] William H. Beluch, Tim Genewein, Andreas Nürnberger,
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