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In the supplementary material, we first present the ef-
fect of different superpixel generation algorithms and show
that SEEDS outperforms others in the active learning (AL)
tasks. We then present the results of using entropy as uncer-
tainty measure and show that BvSB outperforms entropy
for uncertainty sampling. Next we provide the results for
the effect of region size on PASCAL VOC and detail the
steps of polygon click estimation on this dataset. Finally,
we present results on Cityscapes coarse annotation dataset
and show that under the same amount of clicks, using fine
annotation performs significantly better than coarse annota-
tion.

1. Effect of Superpixel Generation Algorithms
The quality of superpixels are usually measured in ASA

(Achievable Segmentation Accuracy) and BR (Boundary
Recall). Let G and S be the set of ground truth segments
and superpixel segments for an image, respectively. ASA is
the upper bound on the accuracy achievable by any segmen-
tation algorithm using superpixel as a pre-processing step.
For the superpixel-based AL method, ASA is essentially the
accuracy of the labels provided by dominant labeling. It is
computed as:

ASA(S) =
∑
Sk∈S

max
Gi∈G

|Sk ∩Gi|/N, (1)

where N is the total number of pixels within the image. BR
measures how well the superpixel boundaries align with the
ground truth boundaries. A pixel on the superpixel bound-
aries is considered as a true positive (TP) if it is within a
local neighborhood of size (2r + 1) × (2r + 1) to an arbi-
trary boundary pixel in G, where r = 0.0025×

√
w2 + h2,

w and h is the image width and height, respectively. BR is
then computed as:

BR(S) = |TP (G,S)|
|TP (G,S)|+ |FN(G,S)|

. (2)

The ASA and BR of various superpixel generation al-
gorithms and rectangles (REC) are shown in Table 1. As

region size is very small (32 × 32 for image size 1024 ×
2048), REC can achieve 92.35% ASA, but the BR is low.
SLIC significantly improves BR compared to REC and
SEEDS obtains higher ASA and BR than SLIC. We also
run SEEDS on half-sized images, i.e., input size 512×1024
for SEEDS H vs. 1024 × 2048 for SEEDS. It can be seen
that downsampling the image does not affect ASA much,
but degrades BR by 4%.

Table 1: Comparing the quality of different region division
schemes on Cityscapes with a region number of 2048 (cor-
responding to region size 32× 32 for REC).

REC SLIC SEEDS SEEDS H
ASA(%) 92.35 93.00 94.88 94.72

BR(%) 16.19 38.11 45.02 41.05

Figure 1 shows the AL results using different superpixel
algorithms. It can be seen that SEEDS leads to better results
than SLIC on both Cityscapes and PASCAL VOC 2012.
Comparing SEEDS and SEEDS H, it can be seen that the
two perform closely for Random sampling, but SEEDS per-
forms better when using ClassBal sampling.

2. Effect of Uncertainty Measures

Entropy is a commonly used measure for uncertainty. It
is defined as:

H(y|x) = −
∑
c

p(y = c|x) log(p(y = c|x)), (3)

where p(y = c|x) is the class posterior given by the
model. Figure 2 shows the AL results with uncertainty sam-
pling using different uncertainty measures on Cityscapes
and PASCAL VOC 2012. It can be seen that BvSB per-
forms closely to Entropy for the superpixel-based approach,
but performs much better than Entropy for the traditional
Rectangle+Polygon-based approach.
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Figure 1: Comparing AL results for different superpixel algorithms. (a) Results on Cityscapes. (b) Results on PASCAL VOC
2012.
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Figure 2: BvSB vs Entropy for uncertainty sampling. (a) Results on Cityscapes. (b) Results on PASCAL VOC 2012.

3. Effect of Region Size on PASCAL VOC

Table 2 lists the number of clicks for different region
sizes on PASCAL VOC 2012 training set and Fig. 3 shows
the performance of different region sizes at a fixed budget of
20k clicks. Similar to Cityscapes, smaller region sizes incur
more class clicks and intersection clicks, yet both Sp+Do
and Rec+Pr benefit from smaller region sizes. Also, Sp+Do
outperforms Rec+Pr from region size 16× 16 to 64× 64.

4. Polygon Click Estimation for PASCAL VOC

PASCAL VOC does not release the polygon click infor-
mation and we estimate the polygon clicks by first running
alphashape algorithm1 to fit a concave hull to the seg-
ment mask and then applying the RDP algorithm2 to reduce
the number of points on the hull. The quality of fitting is
controlled by parameter alpha (for alphashape) and epsilon
(for rdp). The quality of the fitted polygon can be mea-
sured by the IoU (Intersection over Union) between the fit-

1https://pypi.org/project/alphashape/
2https://rdp.readthedocs.io/en/latest/
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Polygon(cp) Class (cc) Intersection (ci) Total

Rec+Pr
32× 32 138,921 456,583 332,800 928,304

128× 128 153,132 79,607 85,489 318,228
Image 157,389 29,516 0 186,905

Sp+Do
256 0 231,573 0 231,573
16 0 8,345 0 8,345

Table 2: The number of clicks for different region sizes on
PASCAL VOC 2012 training set. 32 × 32 corresponds to
256 regions and 128 × 128 corresponds to 16 regions per
image. Note that cp is slightly decreasing for smaller region
size as we do not count the box corners and polygon clicks
on the region boundary have been counted into ci.

1x1 16x16 32x32 64x64 128x128
Region Size

45

50

55

60

65

70

m
Io

U(
%

)

Random+Sp+Do
Random+Rec+Pr

Figure 3: Effect of region size on PASCAL VOC 2012 val
subset using the Random baseline.

ted polygon mask and the original object mask. Table 3 lists
the mIoU, average number of points per polygon, average
running time per image for different combinations of alpha
and epsilon values. Setting alpha=0 is equivalent to fitting a
convex hull to the mask. It is fast and the number of points
per polygon is small, but the mIoU is low. Increasing alpha
to 0.5 boosts the mIoU to 90.16%, but results in hundreds
of points per polygon, which does not reflect the realistic
annotation cost. The rdp algorithm helps to reduce the num-
ber of points while maintaining reasonably good mIoU. We
choose alpha=0.5 and epsilon=1 in our experiments.

5. Benchmark with Cityscapes Coarse Annota-
tion

Cityscapes provides both fine and coarse pixel-wise an-
notation for the 2975 training and 500 validation images.
The fine annotation takes more than 1.5 hours on average
for a single image, while the coarse takes less than 7 mins
per image but the accuracy of object boundaries is com-

Table 3: Effect of alpha and epsilon values on the quality
of the fitted polygons. The results are reported on a random
subset of 100 images (262 polygons) from PACSAL VOC
2012 training set.

alpha epsilon mIoU (%) Avg #of Points Avg Time (sec)
0 \ 68.05 18 0.37

0.1 \ 84.94 309 38.27
0.5 \ 90.16 457 37.59
0.5 0 90.16 159 38.18
0.5 1 88.44 43 44.82
0.5 2 85.96 28 43.46
0.5 3 83.50 22 41.42

promised. In Section 4 of the paper, we conduct experi-
ments using fine annotation. Here we add the experiments
on coarse annotation.

Table 4 lists the number of clicks for fine (Rec+Pr) vs.
coarse (Rec+Co) annotation on Cityscapes training set. It
can be seen that coarse annotation requires only 25% poly-
gon clicks of fine annotation, but when region size is re-
duced to 32×32, the number of class clicks and intersection
clicks are close to fine annotation.

Table 4: The number of clicks for fine (Rec+Pr) vs. coarse
(Rec+Co) annotation on Cityscapes training set.

Polygon(cp) Class (cc) Intersection (ci) Total

Rec+Pr
32× 32 4,170,635 8,952,624 4,987,933 18,111,192

Image 4,756,857 338,302 0 5,095,159

Rec+Co
32× 32 1,075,895 8,283,616 4,258,278 13,617,789

Image 1,223,030 86,409 0 1,309,439

Figure 4 presents the AL curves with coarse annotation
(Rec+Co). It can be seen that though Rec+Co is able to
annotate more regions (pixels) than Rec+Pr using the same
amount of clicks, Rec+Pr still outperforms Rec+Co by a
large margin.
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Figure 4: Active learning results on Cityscapes fine vs. coarse annotation datasets. (a) Benchmarking at fixed amount of
annotation budget measured in clicks. (b) Plot the same results with annotation cost measured in the percentage of labeled
pixels.
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