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Holistic and Contextual Evidential Stereo-LiDAR
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Abstract—Stereo-LiDAR fusion is often used for autonomous
systems such as self-driving cars as the two modalities are com-
plementary to each other. Existing stereo-LiDAR fusion methods
are mostly at feature level or outcome level, without considering
the uncertainty of the depth estimation in each modality. To this
end, we propose a holistic and contextual evidential stereo-LiDAR
fusion network (HCENet) for depth estimation, which considers
both intra-modality and inter-modality uncertainties from stereo
matching and LiDAR point cloud depth completion. We design a
dual network structure that consists of a stereo matching branch
and a LiDAR depth completion branch with new introduced
uncertainty estimation modules for both two branches. Specif-
ically, a multi-scale depth guided feature aggregation module
is first developed to enable information propagation at early
input stage, and then followed by fusing the predicted depths
from two branches based on evidential uncertainties to generate
the final output. Extensive experimental results on KITTI depth
completion and Virtual KITTI2 datasets achieve RMSE of 599.3
and 2253.1, and show that our method outperforms state-of-the-
art SLFNet by 6.52% and 20.7%, respectively.

Index Terms—Stereo-LiDAR fusion, uncertainty estimation,
depth completion, stereo matching.

I. INTRODUCTION

NOwadays perceiving 3D information of the scenery be-
comes an essential task in many applications, such as

autonomous vehicles [1], obstacle detection and avoidance [2],
[3], mobile robotics [4], etc. Ensuring the high-precision and
reliability of depth maps becomes critical especially in safety-
critical applications. With the rapid development of active
and passive sensors, the LiDAR and stereo depth sensors are
often used to measure the depth information. As LiDAR often
acquires sparse point cloud, depth completion is often con-
ducted to compute dense depth maps [5]–[8]. However, their
performance are still limited to the sparsity of LiDAR point
clouds and properties of captured objects. Alternatively, the
stereo-based depth estimation methods [9]–[12] that estimate
the depth maps from a pair of left and right RGB images
are studied in recent years. Different from LiDAR that often
captures spare but accurate depth, stereo matching methods
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Fig. 1. The input of the model consists of the left image, left sparse depth,
right image, and right sparse depth. (a) The left image, (b) final fusion depth,
(c) depth map from depth completion, (d) depth map from stereo matching, (e)
data uncertainty in depth completion, (f) data uncertainty in stereo matching,
(g) model uncertainty in depth completion, (h) model uncertainty in stereo
matching. Our proposed method estimates the data uncertainty and model
uncertainty for stereo matching and LiDAR depth completion. The predicted
uncertainty maps have large values at the boundaries of the object. We obtain
the fusion depth by combining the results from LiDAR depth completion and
stereo matching based evidential fusion.

compute dense but less accurate depth [13]. The performance
of stereo matching methods are mainly restricted by the error
of pixel matching between left and right images, especially for
texture-free and repetitive areas. Studies have shown that the
LiDAR and stereo matching are complementary to each other.
In order to explore the LiDAR and stereo images jointly, many
of existing fusion methods integrate the two modalities at the
feature level [14], [15]. These stereo-LiDAR fusion methods
achieve some progress on the complementary information
exploration. However, the uncertainty of the data has not been
fully considered, leading to untrustworthy depth estimation.

Both the RGB and the point cloud data may suffer from
some distortions or corruptions during data acquisition, such
as saturation, sensor interference, adversarial attacks, etc.
Such distortion or corruption often leads to uncertainty and
the untrustworthy depth estimation results. There are two
main types of uncertainties including the data uncertainty and
model uncertainty. The data uncertainty is also called aleatoric
uncertainty and it reflects the degree to which the data is noisy,
corrupted and inaccurate, compared with underlying accurate
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data. The model uncertainty is also named the epistemic
uncertainty and it refers to the degree of predicted results
of trained models compared to real results, describing the
confidence of the model output [16], [17]. As shown in Fig.
1, following evidential regression [18], we estimate data and
model uncertainties for both depth completion and stereo
matching branches as well as the depth maps for depth fusion.
The model uncertainty in depth completion represents the
uncertainty generated by the depth completion branch, while
model uncertainty in stereo matching represents the uncer-
tainty from the stereo matching branch. The data uncertainty in
depth completion or stereo matching reflects the noise present
in corresponding data, respectively. This uncertainty can arise
due to various factors such as sensor noise, or due to inherent
characteristics of objects, like reflective objects. Quantifying
the data and model uncertainty is practical for enhancing the
reliability of depth estimation.

With these motivations in mind, we propose a holistic and
contextual evidential stereo-LiDAR fusion network (HCENet)
to kill two birds with one stone (see Fig. 2). It employs a
dual network structure including a stereo matching branch and
a LiDAR depth completion branch. The framework enables
uncertainty estimations in the two branches for fusion and el-
egantly integrate multi-modal information for evidential based
depth fusion. To enable information propagation at early stage,
we also propose a multimodal feature aggregation module at
the early input stage.

We propose an evidential based fusion to combine the depth
completion with stereo matching. The approach is able to
provide more accurate depth estimation and the uncertain-
ties at pixel level simultaneously. There are two benefits.
Firstly, the improved depth estimation could provide more
accurate distance estimation for surrounding environment, e.g.,
pedestrians, motorcycles, vehicles. Secondly, the uncertainty
is another important outcome. As shown from the results,
the approach is able to compute model uncertainty which is
correlated with errors in depth estimation. Therefore, it can be
used to identify predictions that might have large errors. This
can be used for high-level decision-making or an evidence to
prompt for human intervention.

Our main contributions are summarized as follows:

• We propose a novel holistic and contextual eviden-
tial based stereo-LiDAR fusion for depth estimation,
which considers the uncertainties and enables both intra-
evidential and inter-evidential fusion.

• We propose a feature aggregation module to propagate
the information from LiDAR point cloud to camera image
for cost volume construction. It exploits complimentary
information from two modalities to improve depth esti-
mation.

• Extensive experiments demonstrate that our proposed
method outperforms the state-of-the-art stereo-LiDAR
fusion methods on KITTI depth completion and Virtual
KITTI2 datasets.

II. RELATED WORK

A. Stereo Matching

With the advent and maturation of deep learning, contem-
porary approaches to stereo matching have predominantly em-
braced a learning-based foundation [19]–[23]. These methods
aggregate the features of the left and right images to construct
the cost volume and then calculate the disparity value through
3D convolution [24]–[27]. The disparity can then be converted
into depth value through the focal length and baseline of
the camera. Some works construct cost volume in different
ways. Kendall et al. [28] and Chang et al. [9] construct cost
volume using concatenation. Guo et al. [29] simultaneously
construct a group-wise correlation volume and a concatenation
volume. Xu et al. [30] introduce a sparse points-based intra-
scale and cross-scale cost aggregation method to replace 3D
convolution, which significantly improves the speed. Most of
these methods need to set a maximum disparity according to
the datasets. Li et al. [31] exploit cross-attention for matching
pixels and does not require a pre-defined disparity range. But it
requires additional occlusion masks for training, which is not
available for most dataset. Shen et al. [32] introduce a volume
fusion module to directly combine multi-scale 4D volumes
and calculate a multi-level loss to accelerate the convergence
of the model. In this paper, we adopt pyramid combination and
warping network (PCWNet) [32] as a baseline to combine with
depth from LiDAR.

B. Depth Completion

LiDAR can provide accurate but sparse depth. To generate
dense depth map from a sparse depth map, depth completion is
often conducted. Many methods [33]–[37] have been proposed
for LiDAR depth completion with the guidance of a reference
color image to integrate structural information of objects.
Typically, early fusion methods concatenate features from
RGB images and sparse depth for depth completion. Yang
et al. [38] use a late fusion strategy which infers the posterior
distribution of a dense depth map associated with an image.
Forkel et al. [39] introduce a real-time fusion method that
integrates LiDAR point clouds into stereo processing using the
semi-global matching algorithm. Hu et al. [40] apply a dual-
branch backbone to generate color- and depth-dominant depth
maps, then fuse them to get the final output. Zhao et al. [41] in-
troduce a mechanism of neighboring attention. Rho et al. [42]
introduce transformer architecture for depth completion and a
guided-attention block to fuse depth and color features. Zhang
et al. [43] integrate convolutional layers and transformers into
a single block for deep completion, enabling the encoding of
both local and global information simultaneously. To avoid
large amount of parameters in transformer based approaches,
we choose to use PENet [40] in the depth completion branch.
From the models, we further introduce uncertainty prediction
on top of PENet. Our method, as compared to existing depth
completion approaches, incorporates uncertainty estimation for
the completed depth map. The resulting depth map, along with
its associated uncertainty, can be fused with the depth map
from the stereo modality.
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Fig. 2. The overview of our proposed method. It mainly consists of sparse depth guided stereo matching branch and image guided depth completion branch,
followed by the evidential based stereo-LiDAR fusion for final dense depth generation. In the sparse depth guided stereo matching branch, two pairs of LiDAR
and stereo images are fed into multi-scale depth guided feature aggregation for estimated dense depth and stereo uncertainty estimation. In the image guided
depth completion branch, a pair of LiDAR and stereo images are used for estimated dense depth and LiDAR uncertainty estimation.

C. Uncertainty Estimation
The data uncertainty can be caused by the noise of training

data, the model uncertainty represents the shortcomings of the
network. Ensemble [44] methods predict model uncertainty
by training multiple models with different initializations and
modeling the distribution over parameters. Monte Carlo (MC)
dropout [45] obtains multiple different prediction distributions
by randomly turning off neurons in the neural network. Both
ensemble and MC dropout require multiple forward passes,
depth values and uncertainties can be obtained by computing
the mean and variance of multiple predicted values, respec-
tively.

Recently, trustworthy machine learning has been used to
compute uncertainty for evidential based multi-view classifica-
tion [46], which shows significant improvement. Many works
use uncertainty for depth prediction. Gansbeke et al. [47]
integrate global and local information to generate the depth
map via confidence weights. Cheng et al. [11] calculate adap-
tive thin volume with an uncertainty-aware cascaded design.
Shen et al. [48] adaptively adjust the disparity search range.
In contrast to the previous methods that rely on variance-
based uncertainty, deep evidential learning [18] is employed
to estimate the uncertainties of the disparity map [49]. Lou et
al. [50] utilize evidential based approach to fuse the outputs
from different stereo matching methods.

Based on evidential learning [18], every depth estimation d
is drawn from a normal distribution with unknown mean and
variance (µ, σ2), which are assumed to be drawn from normal
and inverse-gamma distributions, respectively:

d ∼ N (µ, σ2), µ ∼ N (γ, σ2v−1), σ2 ∼ Γ−1(α, β), (1)

where Γ(·) denotes the gamma function, γ ∈ R, v > 0, α > 1,
β > 0.

With the assumption that the mean and the variance are
independent, the posterior distribution is formulated as a
normal-inverse gamma distribution NIG(γ, v, α, β). In this
work, we follow the evidential learning approach and predict
uncertainties for both stereo matching branch and depth com-
pletion branch for fusion. Different from [49], we integrate
the uncertainty computation with multi-scale cost volume for
an intra-modality fusion. Moreover, we also incorporate inter-
modality fusion between stereo matching and LiDAR based
depth completion.

D. Stereo-LiDAR Fusion

Multimodal fusion combines different kinds of data, such as
images with images, images with text [51], [52], and images
with events [53], [54]. For example, Bao et al. [51] em-
ploy a cross-modal transformer structure designed for deeply
integrating image and text features. Additionally, Liu et al.
[53] utilize an event and image fusion transform module
for merging image and event features, which is based on a
mutual attention mechanism. There have been some research
endeavors focusing on the fusion of stereo and LiDAR modal-
ities, aiming to exploit their complementary properties. In the
method introduced by Zhang et al. [55], a straightforward
concatenation of features derived from stereo images and
point clouds is utilized for the purpose of depth estimation.
Maddern et al. [14] use a probabilistic approach of real-time
LiDAR stereo fusion for low-cost 3D perception. However,
this probabilistic fusion approach performs poorly in scenarios
with limited depth information. To address this issue, Park
et al. [15] employ a CNN model to fuse the input LiDAR
disparity and Stereo disparity. Afterwards, LiDAR and stereo
disparities are utilized to generate calibration parameters [56],
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which are updated every frame for the purpose of registering
LiDAR and stereo disparities. Wang et al. [57] fuse LiDAR
information into a stereo matching network at an early stage.
Choe et al. [58] extract image and point cloud features and
fuse two modalities in a depth cost volume to encode semantic
and geometric information. Cheng et al. [59] tackle the noise
and misalignment in the data by a feedback loop. Xu et
al. [60] introduce a novel lightweight scheme that combines
RGB information and sparse LiDAR points to generate a
semi-dense depth map and employ a varying-weight Gaussian
guiding method for effective cost volume aggregation. He et
al. [61] introduce a novel framework that integrates semantic
information from stereo images and spatial information from
raw point clouds for enhanced 3D object detection by utilizing
a residual attention learning mechanism. Different from stereo
cameras, gated cameras emit light pulses and capture photons
from a specific distance, filtering out backscatter from weather
conditions like fog, rain, and snow [62]. In order to overcome
the limitations of existing LiDAR and RGB stereo depth
estimation methods, Walz et al. [63] present a method that
leverages gated stereo observations and exploits both multi-
view and time-of-flight cues to estimate high-resolution depth
maps. Our proposed method stands out from existing stereo-
LiDAR fusion techniques by not only integrating different
modalities at the feature level but also leveraging uncertainty
to fuse multiple depth maps.

III. METHODOLOGY

The overview of our proposed method is shown in Fig. 2.
It consists of two main branches. Specifically, one branch
is designed for sparse depth guided stereo matching and
the other one is designed for image guided depth comple-
tion, where each branch predicts the depth map as well as
modality-specific uncertainties. Finally, the outputs from the
two branches are combined via evidential based fusion.

In the sparse depth guided stereo matching branch, we
first apply a multi-scale depth guided feature aggregation
on the stereo images and their corresponding LiDAR depth
maps. Subsequently, a stereo matching network is employed,
whereby the adoption of the architecture proposed by the
recent PCWNet [32] is predicated upon its commendable
efficacy in facilitating cross-domain generalization as well as
enhancing stereo matching accuracy. By performing multi-
scale cost volume and disparity regression, the estimated dense
depth can be obtained by converting the disparity into depth.
We integrate the uncertainty computation into the architecture
to compute the uncertainty of the stereo matching results. In
the depth completion branch, the left image and corresponding
left sparse depth are used for deep completion network to
generate the estimated dense depth. We adopt the network
architecture from [40]. Similar to that in stereo matching,
uncertainty of depth completion is also computed. After the
depth map and uncertainty map of the two branches are
obtained, we can take the pixel-wise uncertainty into account
and fuse the evidential distribution of pixels of two different
modalities for final depth. In this way, we can also get the
model uncertainty and data uncertainty of the fused depth map.

A. Sparse Depth Guided Stereo Matching

In stereo matching, the process typically begins with feature
extraction and cost volume construction. The subsequent steps
in stereo matching, namely 3D cost aggregation and disparity
regression, utilize the information in the cost volume to pro-
duce the final disparity map. Cost volume encodes important
features for subsequent disparity calculations. Different from
only using stereo images to construct cost volumes [32], we
here enrich the cost volumes by combining the information
from both sparse depth and stereo images using a new pro-
posed multi-scale depth guided feature aggregation module.

1) Multi-scale Depth Guided Feature Aggregation: Inspired
by multi-modality features fusion method [64], we employ
a multi-scale depth guided feature aggregation strategy to
incorporate depth information into RGB image, as shown in
Fig. 3. Given an image I and corresponding sparse depth D,
initially, we employ separate convolutional layers to generate
initial features for both I and D, which serve as inputs to
the initial multimodal feature aggregation (MFA) module.
Subsequently, the output of each MFA layer is propagated
as input to the subsequent MFA layer. A five-stage MFA
extraction module is proposed to compute multi-scale feature
maps, which is used for cost volume generation later.

As shown in Fig. 3, in MFA block, we use a shared
convolutional layer to process RGB features fI and sparse
depth features fD, yielding MI and MD. Then we concatenate
MI and MD, thereby blending their distinctive attributes at a
specific spatial location. Afterward, we use different convolu-
tional layers to generate spatial-wise gate for MI and MD,
respectively. After obtaining these two gates GI ∈ R1×H×W ,
and GD ∈ R1×H×W , a softmax function is used to generate
weights for the fusion between RGB features and sparse depth
features as follows:

AI =
eGI

eGI + eGD
, (2)

AD =
eGD

eGI + eGD
. (3)

An intermediate feature fw is then computed by weighting
the RGB and depth features as follows:

fw = MI ·AI +MD ·AD. (4)

Then we compute f ′
I and f ′

D as mean of fw and RGB
features or depth features, respectively, which are used for
next stage of MFA:

f ′
I =

fw +MI

2
, (5)

f ′
D =

fw +MD

2
. (6)

We concatenate fw and MI to get fA:

fA = [ fw, MI ]. (7)

After the multi-scale depth-guided feature aggregation, three
feature maps with sizes of H

4 × W
4 , H

8 × W
8 , and H

16 ×
W
16 are

obtained for constructing the multi-scale cost volume. H and
W are the height and width of the initial image.
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Fig. 3. Schematic diagram of the five-stage multi-scale depth guided feature aggregation and diagram of the multimodal feature aggregation (MFA) module.
In the first MFA module, the inputs are RGB features fI and sparse depth features fD . The outputs are f ′

I and f ′
D , which serve as the inputs for the next

stage of the MFA.

2) Uncertainty Estimation in Stereo Matching: We adopt
the recent PCWNet [32] because of its good performance on
both cross-domain generalization and stereo matching accu-
racy. PCWNet constructs combination volumes on the upper
levels of the pyramid and develops a cost volume fusion mod-
ule to integrate them for initial disparity estimation. Then, a
warping volume is constructed on the last level of the pyramid
and employed to refine the initial disparity. Slightly different
from the original PCWNet, we use three scales instead of four
to reduce computational cost for later fusion with LiDAR, and
we do not employ depth refinement. By performing multi-
scale cost volume and disparity regression, the estimated dense
depth is obtained. In this work, we compute the uncertainties
for the multi-scale cost volume to achieve intra-scale fusion.

To estimate the parameters of NIG distribution rather than
merely predicting the disparity map, we modify the dis-
parity regression module into a trustworthy regression with
multi-channel output while keeping the remaining modules
unchanged. As shown in Fig. 4, the proposed trustworthy
regression module uses a single branch of 3D convolution
and the up-sampling block to compute a 4-channel output
O ∈ RD×H×W×4, where D is the maximum of disparity, H
and W are the height and width of the stereo images. We set
D = 192 in our implementation. The distribution parameters

can be computed as follows:

Oγ , Ov, Oα, Oβ = Split(O, dim = −1), (8)
p = Softmax(Oγ), (9)

γ =

D∑
k=0

k · pk, ℓi =

D∑
k=0

Oi · pk, (10)

where k denotes disparity level, p denotes the probability, and
i ∈ {v, α, β}. Finally, a Softplus activation is applied on the
ℓi to obtain v, α, β.

After obtaining the evidence distribution parameters
(γ, v, α, β) of each pixel, following deep evidential regression
[18], predicted depth value, data and model uncertainties can
be calculated as follow:

E[µ] = γ︸ ︷︷ ︸
prediction

, (11)

E
[
σ2
]
=

β

α− 1︸ ︷︷ ︸
data uncertainty

, (12)

Var[µ] =
β

v(α− 1)︸ ︷︷ ︸
model uncertainty

. (13)
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Parameter γ is depth value of prediction, parameters
(v, α, β) are used to calculate data and model uncertainties.
In Eq. (12) and Eq. (13), parameters β and α affect both data
uncertainty and model uncertainty. In Eq. (13), parameter v
affects model uncertainty. With the decrease of parameter v,
the model uncertainty increases.

B. Uncertainty Aware Image Guided Depth Completion

We follow the main network structure in the precise and
efficient image guided depth completion network (PENet) [40]
and modify it for uncertain aware image guided depth com-
pletion. PENet uses a two-branch backbone to exploit color-
dominant and LiDAR-dominant information for two indepent
depth maps. The two dense depth maps are then fused using
the same strategy as in FusionNet [47]. We utilize the PENet
while excluding the utilization of its depth refinement module.

Fig. 5 illustrates network structure of the uncertainty com-
putation. On top of the structure from PENet, we denote its
estimated depth value as γ. We further use three convolutional
layers with the kernel size 3× 3 followed by BatchNorm and
Relu to generate per-pixel uncertainty parameters v, α and β,
which enable us to compute the data and model uncertainties
in depth completion branch.

C. Fusion Strategy based on Evidence

Simply taking a weighted average of the depths from
different scales or modalities may result in mutual interference
among the different depth maps. Therefore, it is essential to
incorporate the uncertainty of each depth map for fusion. We
adopt the fusion strategy with the mixture of NIG distribution
(MoNIG) [65] for its excellent mathematical properties to
perform both intra evidential fusion and inter evidential fusion.
Given k sets of parameters of NIG distributions, the MoNIG
distribution can be computed with the following operations:

MoNIG(γ, v, α, β) = NIG(γ1, v1, α1, β1) ⊕
NIG(γ2, v2, α2, β2) ⊕ · · · ⊕NIG(γk, vk, αk, βk),

(14)

where ⊕ represents the summation operation of two NIG
distributions:

NIG(γ, v, α, β) ≜ NIG (γm, vm, αm, βm)

⊕NIG (γn, vn, αn, βn) ,
(15)

where γ = vmγm+vnγn

vm+vn
, α = αm + αn + 1

2 , v = vm + vn,
β = βm + βn + 1

2vm (γm − γ)
2
+ 1

2vn (γn − γ)
2.

1) Intra Evidential Fusion of Multi-scale Cost Volume
Stereo Matching: Multi-scale cost volume is often used in
stereo matching to exploit the features from different layers
of the feature extractor. We construct three levels of the
cost volumes with 1

16 , 1
8 , 1

4 scaled features and employ the
cost volume fusion module [32] to early combine the knowl-
edge from multi-scale receptive field. These feature maps
contain coarse-to-fine semantic information such as textures,
boundaries, and regions. Then we apply three branches of
trustworthy regression modules to generate parameters of
NIG distributions (γi, vi, αi, βi), where i ∈ {1, 2, 3}. Intra
evidential fusion module integrates three NIG distributions
into one NIG distribution NIG (γs, vs, αs, βs):

NIG(γs, vs, αs, βs) =

NIG(γ1, v1, α1, β1)⊕ · · · ⊕NIG(γ3, v3, α3, β3).
(16)

The intra evidential fusion strategy integrates multi-scale fea-
tures for trustworthy stereo matching.

2) Inter Evidential Fusion of LiDAR Depth Completion and
Stereo Matching: Besides the intra evidential fusion of stereo
matching, we further apply inter evidential fusion from LiDAR
and stereo matching. We denote the NIG distribution of depth
from LiDAR as NIG (γl, vl, αl, βl). We fuse it with the depth
from stereo matching as follows to get:

NIG(γf , vf , αf , βf ) =

NIG (γs, vs, αs, βs)⊕NIG (γl, vl, αl, βl) ,
(17)

where γf = (vs + vl)
−1

(vsγs + vlγl), αf = αs + αl +
1
2 ,

vf = vs+vl, βf = βs+βl+
1
2vs (γs − γf )

2
+ 1

2vl (γl − γf )
2.

The parameter vs and vl represent the confidence of the
depth predicted by the stereo and LiDAR modalities, respec-
tively. In this way, pixels with high uncertainty have lower
weights in the fusion process, and the depth map after fusion
is trustworthy and interpretable. The parameters after fusion
(γf , vf , αf , βf ) also obey the NIG distribution. Therefore data
uncertainty and model uncertainty can be calculated directly.
The uncertainty map of the fused depth map is obtained by
mixing the NIG distribution of the corresponding pixels of
the two branches. It does not need parameters for learning
and does not require a convolutional layer.

D. Loss Function

1) Depth Estimation Loss: We compute the RMSE losses
LD for depth obtained through stereo matching, depth com-
pletion, and the final fused depth, denoted as Ls, Ll and Lf

respectively. The depth map of stereo branch is obtained by
converting the disparity maps using the camera focal length
and baseline. The RMSE loss LD is calculated based on the
ground truth depth map:

LD =

√
1

|V |
∑
v∈V

(
D̂v −Dgt

v

)2
, (18)

where V represents the set of pixels with valid depth in the
ground truth depth map, and |V | represent the size of the set
V . D̂v refers to the predicted depth, while Dgt

v represents the
ground truth depth.
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For stereo matching branch, we also compute smooth L1

loss on three disparity maps, which can be expressed as
follows:

Ldisp =

2∑
j=0

wj · LsmoothL1

(
d̂j , dgt

)
, (19)

where wj is the weight of the j-th prediction of disparity map,
we set w0 = 0.7, w1 = 0.7, w2 = 1, empirically. d̂j and dgt are
the j-th prediction and ground truth disparity, respectively. We
only consider pixels with a disparity value greater than zero.

2) Uncertainty Estimation Loss: Following [18], we com-
pute a negative logarithm of model evidence LN (γ, v, α, β)
and an evidence regularizer LR(γ, v, α). The model evidence
LN (γ, v, α, β) is computed as:

LN (γ, v, α, β) =
1

2
log
(π
v

)
− α log(Ω)

+

(
α+

1

2

)
log
(
(Dgt − γ)2v +Ω

)
+ log

(
Γ(α)

Γ
(
α+ 1

2

)) ,

(20)

where Ω = 2β(1 + v).
The evidence regularizer LR(γ, v, α) is computed as:

LR(γ, v, α) = |Dgt − γ| · (2v + α). (21)

The evidence regularizer encourages large uncertainty when
the difference between the predicted value γ and the ground
truth Dgt is large. This can be easily seen as the minimization
of the term in Eq. (21) would lead to smaller values of v and
α and therefore large uncertainties in Eq. (12) and Eq. (13)
subsequently.

The total loss Lunc comprises two loss terms that serve the
purpose of maximizing and regularizing evidence:

Lunc(γ, v, α, β) = LN(γ, v, α, β) + λLR(γ, v, α), (22)

where λ > 0 controls the balance between the two items. We
set λ = 0.01 in our experiments.

We apply the equations above on the depth maps generated
by stereo matching branch, the LiDAR depth completion
branch, and the fused depth map to get their corresponding
uncertainty losses Lunc(γs, vs, αs, βs), Lunc(γl, vl, αl, βl) and
Lunc(γf , vf , αf , βf ), respectively.

To optimize the disparity value, predicted depth value and
the corresponding uncertainty value, the overall loss function
is computed as follows:

LTotal = Ll + Ls + Lf + Ldisp + Lunc(γs, vs, αs, βs)

+ Lunc(γl, vl, αl, βl) + Lunc(γf , vf , αf , βf ).
(23)

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics

We have implemented the proposed network and tested its
performance with the KITTI depth completion dataset [5] and
the Virtual KITTI2 dataset [66].

The KITTI depth completion dataset is a large-scale dataset
capturing real-world driving scenarios in outdoor environ-
ments. It comprises 138 scenes, encompassing a training set of

TABLE I
COMPARISON WITH OTHER METHODS ON THE KITTI DEPTH COMPLETION

VALIDATION SET. S REFERS TO STEREO IMAGES, L REFERS TO LIDAR
AND M REFERS TO MONOCULAR IMAGE. ↓ INDICATES THAT THE

SMALLER VALUE THE BETTER PERFORMANCE.

Methods Modality RMSE MAE IRMSE IMAE
(mm)↓ (mm)↓ (1/km)↓ (1/km)↓

ACMNet [41] M + L 1037.3 236.4 2.38 0.91
NLSPN [69] M + L 868.8 236.7 2.61 1.02
GuideNet [70] M + L 857.8 234.0 2.36 0.99
PENet [40] M + L 761.3 210.9 2.19 0.90
LiStereo [55] S + L 832.1 283.9 2.19 1.10
CCVN [57] S + L 749.3 252.5 1.39 0.80
VPN [58] S + L 636.2 205.1 1.87 0.98
SLFNet [68] S + L 641.1 197.0 1.77 0.87
Ours S + L 599.3 190.0 1.43 0.78

42,949 images and a validation set of 3,426 images. Because
there is no ground truth in the test set, we follow CCVN
[57] and use the same 1000 pictures in the validation set
for comparison with other methods. The initial resolution is
1242×352. Due to the absence of ground truth in the top
portion of the initial images, a cropping approach is employed
during the training process, resulting in images with dimen-
sions of 1216×256. The depth maps provided by Velodyne
HDL-64e are sparse, with ground truth depth generated by
combining consecutive 11 frames to form a single depth map,
resulting in approximately 30% of pixels containing depth
information [57].

Virtual KITTI2 dataset is a synthetic one with ground truth
depth for all pixels and is a more realistic version of the
original Virtual KITTI 1.3.1 [67]. Following [68], we use
“Scene01” and “Scene02” for training, “Scene06”, “Scene18”
and “Scene20” for evaluation. For each scene, we take the only
scenario (15-deg-left) for training and evaluation. The training
and test sets have 680 and 1446 images, respectively.

Following [57], we compute root mean square error
(RMSE), mean absolute error (MAE), inverse root mean
square error (IRMSE), and inverse mean absolute error
(IMAE) to evaluate the performance of our method.

B. Implementation Details

Our method is implemented with PyTorch. The training
phase uses the Adam (β1 = 0.9, β2 = 0.999) optimizer. We
use four NVIDIA GTX 3090 GPUs for experiments, and set
the batch size to 4. The initial learning rate is set to 1e-3.
After training for 10 epochs, it decreases to 5e-4. The training
epoch is set to 15 for KITTI depth completion dataset. We
use the weights pre-trained on the KITTI depth completion
dataset to fine-tune on Vitual KITTI2 dataset for 14 epochs.
The maximum depth is set to 100 and 80 on KITTI depth
completion dataset and Vitual KITTI2 dataset, respectively.

C. Comparison with The State-of-the-art Methods

1) Performance Comparison in KITTI: We compare our
method with four stereo-LiDAR fusion methods including
LiStereo [55], CCVN [57], VPN [58], SLFNet [68] in KITTI
depth completion dataset. We obtain the results from [68].



8

(a) (b) (c) (d)

Far or Large Near or Small  

Fig. 6. Visual comparison of results. (a) The left image (top), enlarged area indicated by the rectangular in red (bottom right), the ground truth of depth
values for enlarged area (bottom left). (b) The results by CCVN (top), enlarged area (bottom left), error map (bottom right). (c) The results by SLFNet (top),
enlarged area (bottom left), error map (bottom right). (d) The results by our proposed HCENet (top), enlarged area (bottom left), error map (bottom right).
The black color in error maps indicates an absence of ground truth. The colors from red to blue in the color bar indicate depth or error from large to small.

TABLE II
COMPARISON WITH STEREO-LIDAR FUSION METHODS ON THE VITUAL

KITTI2 DATASET.

Methods Modality RMSE(mm)↓ MAE(mm)↓
CCVN [57] Stereo + LiDAR 3726.8 915.6
VPN [58] Stereo + LiDAR 3217.1 712.0
SLFNet [68] Stereo + LiDAR 2843.1 696.2
Ours Stereo + LiDAR 2253.1 670.1

Table I summaries the results. Our method is compared with
other methods in four metrics. Specifically, it outperforms
VPN and SLFNet by 5.8% and 6.5% in RMSE, 7.3% and
3.5% in MAE, 23.5% and 19.2% in IRMSE, 20.4% and 10.3%
in IMAE, respectively.

Fig. 6 shows a visual comparison of the results of four
samples by the proposed method with those by CCVN and
SLFNet. We zoom in on the area in the red box. The ground
truth of depth maps provided by LiDAR are sparse, less than
30% of pixels in the ground truth contain depth information.
Pixels without information are shown as black points in

visualizations with a depth value of 0, making it hard to
see the shapes of many objects. Differences in color intensity
between the predicted depth map and the actual one are mostly
due to errors in estimation. We have added a color bar for
better visualization. In the depth map, blue stands for small
distances, while red represents large distances. As for the
error maps in (b), (c), and (d), blue indicates small error,
whereas red signifies large error. As we can see from the
comparison, our method predicts the depth more accurately
in regions with objects such as railing, traffic sign board, etc.
In contrast, CCVN and SLFNet produce inferior predictions
where the shapes of the objects are not well preserved from
the backgrounds in depth map.

Besides the stereo-LiDAR fusion methods, we also show
the results from monocular depth completion fusion (M+L)
methods (ACMNet [41], NLSPN [69], GuideNet [70], PENet
[40]) in Table I for comparison. Compared to monocular
depth completion methods, our approach also surpasses all
the methods by large margins.

2) Performances in other dataset: Although KITTI depth
completion dataset is a real-world dataset, it has some limita-
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TABLE III
PERFORMANCE OF DIFFERENT FEATURE FUSION STRATEGIES ON KITTI

DEPTH COMPLETION VALIDATION SET.

Methods RMSE↓ MAE↓ IRMSE↓ IMAE↓
Concat 614.4 193.4 1.49 0.81
Ours 599.3 190.0 1.43 0.78
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Fig. 7. The Pearson correlation coefficient matrix among the data uncertainty,
the model uncertainty and the MAE of estimated depth on (a) The KITTI
depth completion dataset and (b) The Virtual KITTI2 dataset.

tions as the ground truth of the depth is derived by aggregating
LiDAR points from surrounding frames. Therefore, it suffers
from errors for regions such as the glass on cars, occluded
areas, etc. Therefore, we also conduct the experiments on
Virtual KITTI2 dataset. Since the Virtual KITTI2 dataset only
provides stereo image pairs and dense depth pairs, we use
randomly generated masks and integrate them with ground
truth to obtain sparse depth maps, each with about 5k pixels.
Table II shows the comparison on the Virtual KITTI2 dataset.
Our method achieves the best performance as well. Following
SLFNet [68], we compare our method with CCVN, VPN, and
SLFNet. Our method outperforms CCVN, VPN, and SLFNet
in RMSE by 39.5%, 30.0%, and 20.7%, respectively.

D. Ablation Study

In this section, we perform ablation studies to assess the
impact of different design choices in our network. We first
evaluate the benefits of the MFA module. We compare MFA
with simple concatenation. Table III shows the performance of
different feature fusion strategies on KITTI depth completion
dataset. Our MFA module outperforms simple concatenation
and proves that our fusion method is suitable for feature fusion
of sparse depth and RGB image.

Next, we evaluate how different values of λ affect the
performance, which is used to control the balance between
model evidence and evidence regularizer in Eq. (22). Table IV
shows the results for different λ. As we can see, λ = 0.01 leads
to best results. The results show that the model performance
will be worse without penalty (λ = 0), which justifies the needs
of the evidence regularization. On the other side, large values
would not help much.

We continue the ablation study to justify the effectiveness
of intra and inter evidential fusion, and the MFA. Table V
shows the results. As can be seen, if the MFA module is
not used, the RMSE will increase, which shows that the
introduction of sparse depth features in the feature fusion

TABLE IV
COMPARISON OF THE STRENGTH OF EVIDENCE REGULARIZATION ON

KITTI DEPTH COMPLETION DATASET.

λ RMSE↓ MAE↓ IRMSE↓ IMAE↓
0 602.6 208.9 1.43 0.82

0.5 644.0 198.3 1.49 0.82
0.02 600.6 192.6 1.44 0.79
0.01 599.3 190.0 1.43 0.78

stage can help our stereo matching branch to generate more
accurate depths. This is because there are many textureless
and occluded regions in the dataset, and the introduction of
LiDAR information can reduce false predictions. Intra and
inter evidential fusion both contribute to the improvement of
the model, resulting in a respective decrease of 0.8% and 7.9%
in the RMSE. Furthermore, when these three modules are used
in conjunction, the model exhibits its best performance across
all four metrics.

E. Comparison of Depth Map Fusion Strategies

We also conduct experiments to evaluate the performance
enhancements introduced by our depth fusion strategies. In
Table VI, we compare different ways to fuse the depth
values predicted by the two branches of stereo matching and
depth completion. Using the average depth of two branches
lacks uncertainty incorporation. It simply combines the depth
maps without considering uncertainty and divides the result
by two, leading to poor performance. We also compute the
relative model uncertainties obtained from two branches by
concatenating their model uncertainties and applying the soft-
max function. This process allows us to obtain the relative
uncertainties, which is then used for depth map fusion. Our
fusion method is better than these two compared strategies,
which shows that our predictive level fusion can fully exploit
the uncertainty of two modalities.

F. Uncertainty Analysis

The deep evidential learning of uncertainty computes both
data and model uncertainties. However, data uncertainty can-
not be reduced through model improvement, whereas model
uncertainty reflects the predictive capability of the model. We
compute the Pearson correlation coefficient matrix among the
data uncertainty, the model uncertainty and the MAE metric
tested on the KITTI depth completion dataset and the Virtual
KITTI2 dataset in Fig. 7. The correlation coefficients between
model uncertainty and MAE are high on both datasets, with
values of 0.61 and 0.67, respectively. The positive correlation
coefficient indicates that our predicted uncertainty is able
to effectively reflect the errors. Therefore, during inference,
the accuracy of predictions can be inferred based on their
associated uncertainty. For the two datasets, the correlation
coefficients between model uncertainty and data uncertainty
are 0.73 and 0.94, respectively. The model uncertainty and
data uncertainty are highly correlated, indicating that data
uncertainty plays a major role to affect the model uncertainty.
We also provide a visualization of the data uncertainty and
model uncertainty on KITTI depth completion dataset in Fig.
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Fig. 8. The top row in the illustration represents the left image, while the second row depicts the fused depth map. The third and fourth rows correspond to
the data uncertainty and model uncertainty, respectively. Both data uncertainty and model uncertainty exhibit higher values in the boundary regions of objects
and at farther distances.

TABLE V
ABLATION EXPERIMENTS WITH DIFFERENT MODULE COMBINATIONS ON KITTI DEPTH COMPLETION VALIDATION DATASET.

Intra Evidential Fusion MFA Inter Evidential Fusion RMSE↓ MAE↓ IRMSE↓ IMAE↓
✓ ✓ 651.1 224.1 1.78 0.97
✓ ✓ 621.6 219.4 1.39 0.82

✓ ✓ 604.4 203.8 1.49 0.84
✓ ✓ ✓ 599.3 190.0 1.43 0.78

TABLE VI
RESULTS OF DIFFERENT DEPTH FUSION STRATEGIES ON KITTI DEPTH

COMPLETION VALIDATION DATASET.

Methods RMSE↓ MAE↓ IRMSE↓ IMAE↓
Average 651.1 224.1 1.78 0.97
Relative 625.6 223.0 1.43 0.84
Ours 599.3 190.0 1.43 0.78

8 from three samples. As observed, the data and model
uncertainties tend to exhibit higher values at the boundaries of
objects, such as pedestrians and vehicles, which is consistent
with the intuition that the decisions alone the boundaries are
more challenging. Predictions at long distances also exhibit a
high degree of uncertainty, such as the sky.

V. CONCLUSIONS

In this paper, we propose a novel evidential based stereo-
LiDAR fusion for depth estimation. To better exploit the com-
plementary relationship of LiDAR and stereo modalities, we
introduce the MFA module at the feature level for early multi-
modal fusion. Our network computes pixel-wise uncertainties
and uses them to combine the depth from stereo matching
and that from depth completion to get the final depth map.
Compared to previous stereo-LiDAR fusion techniques, our
HCENet is able to produce uncertainties for each modality and
achieve trustworthy fusion. The fusion requires higher compu-
tational cost compared with stereo only or depth completion
only approaches. For practical deployment at edge side, more
efforts such as model compression shall be adopted to reduce

the parameters for improved inference speed. Experimental
results show that the proposed method outperforms state-of-
the-art methods.
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