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Abstract—Existing approaches towards anomaly detec-
tion (AD) often rely on a substantial amount of anomaly-free
data to train representation and density models. However, large
anomaly-free datasets may not always be available before the
inference stage; in which case an anomaly detection model must
be trained with only a handful of normal samples, a.k.a. few-
shot anomaly detection (FSAD). In this paper, we propose a
novel methodology to address the challenge of FSAD which
incorporates two important techniques. Firstly, we employ a
model pre-trained on a large source dataset to initialize model
weights. Secondly, to ameliorate the covariate shift between
source and target domains, we adopt contrastive training to
fine-tune on the few-shot target domain data. To learn suitable
representations for the downstream AD task, we additionally
incorporate cross-instance positive pairs to encourage a tight
cluster of the normal samples, and negative pairs for better
separation between normal and synthesized negative samples.
We evaluate few-shot anomaly detection on on 3 controlled AD
tasks and 4 real-world AD tasks to demonstrate the effectiveness
of the proposed method.

Index Terms—Anomaly Detection, Contrastive Learning, Few-
Shot Learning, Fine-Tuning

I. INTRODUCTION

Identifying anomalous data, a.k.a. anomaly detection (AD),
is a fundamental problem in machine learning research with
significant potential in various applications, such as defect
identification [1], surveillance [2], and autonomous driving [3].
It is typically assumed that normal images are abundant,
whereas labeled anomaly examples are non-exhaustive. Hence,
anomaly detection models are trained only with normal im-
ages, a.k.a. one-class classification. However, this is not always
the case. For example, some practical applications require
an AD system to function instantly upon deployment on a
new task with limited existing data or when acquiring normal
samples is expensive or time-consuming. As a result, large
numbers of normal images may not be available for building
a good anomaly detection model, especially at the initial stages
of bootstrapping an AD system.

In response to the demand for building an anomaly detection
system under the deficiency of normal training examples, few-
shot anomaly detection (FSAD), where only a few normal and
no abnormal images are available, emerged as a solution [4]–
[6], and there is growing interest from the community on this
topic. Among the limited pioneering works, Sheynin et al.
[4] developed a generative adversarial model to distinguish
transformed image patches from generated ones. However,
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Fig. 1: We present a contrastive fine-tuning approach towards
few-shot anomaly detection. Backbone network is initialized
by ImageNet supervised pre-trained model weights. Fine-
tuning on few-shot target dataset through contrastive training
achieves few-shot anomaly detection.

such adversarial models may be tricky to tune [7] and require
multiple transformations on test samples at inference time,
resulting in additional computation overhead. The more recent
work of RegAD [5] learns a common model over multiple
classes of normal images using a feature registration proxy
task, but their method requires a training set with normal
images from multiple known classes, which is a more re-
strictive setting. GraphCore [6], stemming from PatchCore [8],
approached FSAD by comparing testing patches to few-shot
training ones. However, both RegAD and GraphCore are built
upon the assumption that anomalies are caused by variations
in local appearance and their success is only demonstrated
on highly constrained industrial anomaly detection tasks. In
summary, existing methods in FSAD either complicate the
training procedure with tricky hyper-parameter tuning [4] or
have overly restrictive assumptions on the presentations of
anomalies [6], [8], which limit their applicability to wider
range of tasks.

In this work, we aim to develop a few-shot anomaly detec-
tion framework applicable to a wide variety of data domains,
without complicated hyper-parameter tuning. We achieve this
by synergistically combining transfer learning from a pre-
trained model with representation learning on the available
few-shot normal data. Re-using weights from a backbone
network pre-trained on a large source domain dataset, e.g. Im-
ageNet [9], enables exploitation of powerful, low-level feature
extractors and better initialization of network parameters [10]
for downstream tasks. We believe that re-using pre-trained
weights could particularly benefit few-shot anomaly detection,
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as training data is insufficient to achieve learning good rep-
resentations from scratch. However, as highlighted in existing
works [11], [12], directly reusing the pre-trained weights may
not fully utilize the limited supervision in the downstream
task because of two factors. First, the anomaly detection task
requires feature representation that separates normal samples
from abnormal ones. The representations learned during pre-
training are optimized for a different task, such as semantic
image classification of ImageNet, and are therefore not nec-
essarily optimal for the downstream anomaly detection task.
Second, performance can be hindered by covariate shift [13],
which is a result of the difference in distribution between the
source domain data (used for pre-training the model), and the
target domain data (anomalies are to be detected).

To tackle these challenges, we propose an unsupervised fine-
tuning approach, named “COntrastive Fine-Tuning for few-
shot Anomaly Detection” (COFT-AD), to adapt pre-trained
weights to downstream few-shot anomaly detection task. To
ameliorate the covariate shift between source and target do-
main data, we first design customized loss functions with three
components, each of which encourages a desirable property
in the learnt representation space when adapted towards the
anomaly detection task in the target domain.The first compo-
nent is a contrastive loss [14], defined on all available few-
shot normal examples. Optimizing a contrastive loss helps
adapt pre-trained model weights to downstream anomaly de-
tection dataset distribution. Specifically, this is achieved by
encouraging closeness between one sample and its augmented
versions in the feature space. This helps improve model’s
robustness to natural variations within the normal data. The
second component further optimizes representations for the
downstream anomaly detection task by encouraging normal
samples to form a tight cluster in the feature space such that
a density based anomaly inference is facilitated. We achieve
this with a cross-instance positive pair loss that encourages
closeness between the feature embeddings of two randomly
sampled normal images. Note that this differs from standard
contrastive training as closeness is encouraged between two
different normal samples instead of a sample and its augmented
version. Finally, when prior knowledge on the anomalies is
available, we are able to synthesize negative examples [15] to
simulate anomalies in an additional negative pair loss, which
encourages better separation between the normal samples and
their negative pairs. In our analysis, we empirically reveal
that the method, by which negative samples are synthesised,
has high impact on FSAD performance and should be used
carefully with prior knowledge on the nature of anomalies.
An overall illustration of the proposed framework is presented
in Fig. 1.

We extensively evaluate COFT-AD on a diverse range of
anomaly detection tasks, covering controlled setups, in which
normal and anomalous data are deliberately designed in order
to exhibit certain properties, as well as on real-world data
FSAD, where the nature of anomalies is out of our control. The
extensive evaluations demonstrate the ability of our method to
handle greater diversity in data domains while maintaining its
strong performance. We summarize the contribution of our
work as follows:

• We approach hyper-parameter friendly and data domain
versatile few-shot anomaly detection from a transfer
learning perspective. We adopt contrastive fine-tuning on
few-shot normal samples in the target domain to adapt
pre-trained model weights to target domain distribution.

• We further introduce a cross-instance positive pair loss
to encourage normal samples to form a tight cluster in
the embedding space for better density-based anomaly
detection.

• In scenarios where prior knowledge on anomaly presen-
tations is available, a negative pair loss is further incor-
porated with synthesized negative samples to encourage
better separation between normal and abnormal samples.

• We demonstrate the effectiveness of the proposed method,
COntrastive Fine-Tuning for few-shot Anomaly Detec-
tion (COFT-AD), on 3 controlled anomaly detection
datasets and 4 real-world industrial defect identification
datasets, achieving very competitive performance.

II. RELATED WORK

A. Anomaly Detection

Traditional AD methods include PCA [16], cluster analysis
[17] and one-class classification [18]. With the advent of
deep learning, representation learning is employed to avoid
manual feature engineering and kernel construction. This
leads to novel anomaly detection methods based on deep
neural networks, such as autoencoders [19] and generative
adversarial networks (GAN) [20], [21]. Among them, anoGAN
[21] was proposed to learn the manifold of normal samples
and anomalous samples cannot be perfectly projected onto
the normal manifold by the generator learned solely with
normal samples. However, it requires expensive optimization
for detecting abnormal samples and training GANs is prone
to some well-known challenges including instability and mode
collapse. Among the autoencoder based approaches, [19]
adopted the SSIM metric as the similarity measure between
input and reconstructed images. Recently, an effective line
of works approach AD as a two-stage problem of represen-
tation learning followed by outlier detection in the learned
representation space [22]–[26]. Among these works, deep
SVDD [22] proposes to learn a feature embedding that groups
normal samples closer to a cluster center. Subsequent works
develop self-supervised pretraining methods to learn represen-
tations suitable for separating abnormal samples from normal
ones by optimizing a proxy task [15], [23]–[25]. Anomaly
detection is then achieved through a density model fit to
the learnt representations of normal training samples. These
approaches prevail in many anomaly detection benchmarks
and are computationally efficient. Nevertheless, representation
learning requires a substantial amount of training data which
may not be readily available in certain practical applications.
Another line of works approach anomaly detection through a
non-parametric framework. PatchCore [8] divides images into
multiple patches and a nearest neighbour classifier is adopted
to compare testing patches to training ones to determine
anomalies. To reduce computational cost, only a subset of
training patches are selected for comparison. Nonetheless,
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Fig. 2: Illustration of adapting source domain pretrained model through combining contrastive training loss (green arrow lines),
cross-instance positive pair loss (green arrow lines) and negative pair loss (red arrow lines) for few-shot anomaly detection.
The dashed arrow lines indicate no gradient backpropagation.

the non-parametric approaches still suffer from computational
efficiency when the diversity of normal pattern grows larger.

B. Few-Shot Anomaly Detection

Few-shot anomaly detection (FSAD) is an emerging prob-
lem which aims to enable anomaly detection based on only
a few normal samples as training data. We distinguish FSAD
from the few-shot semi-supervised anomaly detection setting
in [27], where a limited number of labeled anomalies are
available for training, as it is sometimes referred to as few-
shot anomaly detection in the literature [28]. The pioneering
FSAD method of [4] employs a hierarchical generative model
to generate new samples from the few-shot examples. A
discriminator is designed to discriminate generated images
from the real ones and different transformations. Anomalies
are then determined by whether the discriminator can correctly
classify the type of transformations. Graphcore [6] extends
Patchcore [8] for few-shot anomaly detection by focusing
on patch level anomalies.Inspired by the few-shot learning
paradigm, RegAD [5] develops a registration-based proxy task
for representation learning; this task aims to find the affine
transformation that aligns the feature maps of two samples
from the same semantic class. RegAD requires additional
related training data, for instance, data from other classes
besides the target class on the MVTec dataset, for training
the proxy task. The work of [29] addresses a different few-
shot setting that requires normal samples to be provided with
semantic labels. When normal data comprise multiple semantic
classes, embedding all normal samples into a single cluster
may result in a failure to detect anomalies occurring between
semantic classes. Learning multiple prototypes was proposed
to tackle this issue. In comparison, our method adapts pre-
trained weights to target data using only a few normal training
samples; unlike some existing methods, no additional data are
required during the representation learning phase. This enables
our method to perform well in a broader range of anomaly

detection scenarios. Recently, an emerging topic in anomaly
detection tackles normal data distribution shift in testing data.
Specifically, [30] is built upon reverse distillation [31] for
anomaly detection. It proposed to improve the generalization
of anomaly detection model by augmenting testing data with
selected data augmentation. Few-shot anomaly detection pro-
vides a new pespective for tackling the distribution shift issue.

C. Contrastive Learning

Pre-training feature representation through contrasting aug-
mented samples of the same identity has demonstrated promis-
ing results. SimCLR [32], [33] employed an N-pair loss [34]
to encourage two augmentations of the same instance (positive
pairs) to be close in the feature space and other instances (neg-
ative pairs) to be far away. The use of negative pairs requires a
large training batch size, BYOL [14] introduced an exponential
moving average model to avoid collapsed predictions and
remove negative pairs. Besides pre-training of representa-
tions, contrastive learning has been recently demonstrated to
be effective for label-efficient fine-tuning [11], [12], [35],
[36]. When source and target domain data distributions are
subject to covariate shift, contrastive training on the target
data in an unsupervised fashion can potentially alleviate the
domain shift [11], [12]. In the context of anomaly detection,
contrastive training has been adopted for various purposes.
CSI [37] uses negative pairs in a different way, they consider
different samples within the same category as negative pairs
and does not have any positive pairs, whereas our method
considers them as positive pairs and uses synthesized anomaly
samples as negative pairs. In addition, CSI does not use a
pretrained model, making it not optimal for few-shot scenarios.
Moreover, the loss design in CSI differs from ours. While
both methods build on contrastive loss, CSI incorporates an
additional transformation prediction loss.Contrastive learning
has been employed for separating normal samples from ab-
normal ones in the feature space [38]. In [38], as negative
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pairs are constructed between different instances, a carefully
selection of negative pairs is vital to the performance of
anomaly detection, and this could be sensitive to data samples
with low intra-class variations. Other self-supervised learning
approaches use auxiliary tasks for representation learning for
anomaly detection [39]. In this work, we demonstrate that
contrastive training in conjunction with positive pair and
negative pair training on the target domain data plays an
important role in adapting pre-trained model weights to the
target domain distribution, which helps anomaly detection with
limited exposure to positive or normal samples.

III. METHODOLOGY

In this work, we assume a model pre-trained on a large
external image collection (e.g. ImageNet) is available. We refer
to this external data as the source domain. The downstream
data where we want to detect anomalies is referred to as
the target domain. We first describe contrastive training as a
means to fine-tune a pre-trained model to the target domain
distribution. We then introduce the cross-instance positive
pair loss to encourage normal samples to form a cluster in
the feature space, and the negative pair loss to encourage
better separation of normal and abnormal samples when prior
knowledge of anomalies is available. An overview of the
proposed adaptation framework is shown in Fig. 2. Lastly,
we describe how to build the density-based anomaly detection
model on the learnt representations.

A. Contrastive Training for Fine-tuning

We first denote the few-shot training examples from the
target domain as D𝑇 = {X𝑖}𝑖=1· · ·𝑁𝑇

. The backbone, pre-
trained network 𝑓 is parameterized by 𝚯, and z = 𝑓 (X;𝚯)
are the embeddings of input samples X in the feature space.
Contrastive training updates the model parameters 𝚯 by op-
timizing a contrastive loss in an unsupervised manner as in
Eq. 1. In this work, we consider the BYOL [14] method for
contrastive learning, which uses a duo of online and target
encoder networks, due to its smaller memory requirements.

L𝐶𝑜𝑛 = − 1
𝑁𝑇

∑︁
X𝑖 ∈D𝑇

𝑞(𝑔(z𝑖))⊤𝑔(ẑ𝑖)
| |𝑞(𝑔(z𝑖)) | | · | |𝑔(ẑ𝑖) | |

(1)

To learn effective representations, contrastive training con-
trasts between two random augmentations of the same in-
put image, denoted as 𝑡 (X). The encoder network outputs
the representation embedding for each augmented input as
z = 𝑓 (𝑡 (X);Θ). The representations are further projected to
a lower dimensional space through a projection head 𝑔(·).
The cosine similarity is then calculated between the predictor’s
output 𝑞(𝑔(z)) on the online view and the projector’s output
𝑔(ẑ) on the target view. To avoid a trivial solution, e.g.
an encoder function giving constant outputs, the target view
is the output of an exponential moving average model, i.e.
ẑ = 𝑓 (X; Θ̂) and Θ̂𝑡 = 𝛽Θ̂𝑡−1 + (1 − 𝛽)Θ𝑡 where Θ̂ are
the parameters of the target network and 𝛽 is a moving
average hyper-parameter. When a source domain model with
trained parameters Θ𝑆 is available, contrastive training on the

target domain is initialized by this source domain model, i.e.
Θ0 = Θ𝑆 , such that the low-level feature extractors can be
reused. Therefore, contrastive training serves to adapt a pre-
trained network to the few-shot target domain training samples.
Discussion: Recent works have demonstrated that contrastive
training helps adapt model parameters to target domain dis-
tributions [11], [12], [35], [36]. We argue that contrastive
training on the target domain data can alleviate the negative
impact of covariate shift. For simplicity, we denote the source
domain dataset as D𝑆 , e.g. the ImageNet dataset, and the target
domain dataset as D𝑇 , e.g. anomaly detection dataset. The
objective of supervised training on the source domain is to
find the optimal model parameters Φ𝑆∗,Θ𝑆∗ that minimize the
following cross entropy loss where ℎ(·;𝚽) is the classifier on
the source domain and 𝑓 (·;𝚯) is the backbone network to be
transferred:

Φ𝑆∗,Θ𝑆∗ = arg min
Φ,Θ

1
|D𝑆 |

∑︁
X𝑖 ,𝑦𝑖 ∈D𝑆

L𝐶𝐸 (ℎ( 𝑓 (X𝑖;Θ);Φ), 𝑦𝑖)

(2)
Covariate shift between source and target dataset indicates

a distributional misalignment, i.e. 𝑝𝑆 (X) ≠ 𝑝𝑇 (X) which is
easily manifested by the difference in the contents of the
source and target domain data. Therefore, it is reasonable to
believe the backbone network optimized for source domain
model is not optimal for the target domain distribution. To ease
the negative impact caused by covariate shift, we introduce
contrastive training on the target domain by optimizing an un-
supervised contrastive loss with model parameters initialized
with the source domain, as in Eq. 3.

min
Θ

1
|D𝑇 |

∑︁
X𝑖 ∈D𝑇

L𝐶𝑜𝑛 ( 𝑓 (𝑡 (X𝑖);Θ), 𝑓 (𝑡 (X𝑖); Θ̂)),

𝑠.𝑡. Θ𝑇
0 = Θ𝑆∗

(3)

By minimizing the contrastive loss, the network is able to
capture key features from the target domain to discriminate
non-identical instances and we empirically demonstrate this to
be effective for adapting our source model to the target domain
for downstream anomaly detection. When the augmentations
are chosen to mimic the commonly seen variations within
normal samples, contrasting two augmented images forces
the network to produce similar representations regardless of
the augmentations. This means the representation learned
from contrastive training allows the network to learn features
invariant to common variations in appearance and pose that
one could encounter within the normal data. Such ability will
help bring normal samples closer in the feature space, thus
benefit downstream anomaly detection.

B. Cross-Instance Positive Pair Loss
Detecting anomaly with pre-trained representation can be

often formulated as fitting a parameterized distribution model,
e.g. a multi-variate Gaussian distribution, to the normal sam-
ples [22]. Such a density-based anomaly detection paradigm
introduces low storage overhead and efficient computation of
anomaly score. The contrastive training objective introduced
in the previous section encourages adaptation to target distri-
bution, but it does not guarantee the learned representation is
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suitable for the downstream density-based anomaly detection,
in which normal data is assumed to occupy tight clusters while
anomalies are sparse. Inspired by the success of one-class
classification [22], we propose to encourage normal samples to
form a tight cluster in the feature space through an additional
cross-instance positive pair loss term. Specifically, we treat a
pair of randomly selected normal samples as a positive pair,
the representations of each positive pair are encouraged to be
closer by minimizing the cosine similarity as in Eq. 4 where
p is a random permutation of the list {1, · · · , 𝑁}.

L𝑃𝑃 = − 1
2𝑁𝑇

∑︁
𝑖

∑︁
𝑗∈p

𝑓 (𝑡 (X𝑖);Θ)⊤ 𝑓 (𝑡 (X 𝑗 ); Θ̂)
| | 𝑓 (𝑡 (X𝑖);Θ) | | · | | 𝑓 (𝑡 (X 𝑗 ); Θ̂) | |

+
𝑓 (𝑡 (X 𝑗 );Θ)⊤ 𝑓 (𝑡 (X𝑖); Θ̂)

| | 𝑓 (𝑡 (X 𝑗 );Θ) | | · | | 𝑓 (𝑡 (X𝑖); Θ̂) | |

(4)

Compared with the alternative of maintaining a fixed cluster
center as proposed in [22], the cross-instance positive pair loss
has two advantages. First, we do not need to fix the cluster
center at the start of training. This avoids introducing excessive
regularization on the representation embedding as the cluster
center may vary during the course of training. Second, we
minimize the cosine similarity between the online view and
target view where the latter does not backpropagate gradients.
This avoids collapse to a trivial solution (e.g. all zero weights).
We note that the cross-instance positive pair loss is calculated
on the features directly from the backbone network. This is
due to the fact that backbone output features will be used
for anomaly detection so the loss should be optimized in the
feature space.

C. Incorporating Negative Pair Loss

The contrastive loss and cross-instance positive pair loss
both encourage similarity in embeddings of data within the
normal distribution. However, we also want to ensure a
significant distance in the feature space exists between the
normal samples and anomalies. Synthesized negative examples
have been demonstrated to aid in pre-training representations
for anomaly detection. Well-calibrated synthesis approaches,
where the negative samples closely align with the real anoma-
lies, can even achieve the state-of-the-art performance on
certain datasets [15]. In this work, we propose to incorporate
additional synthetic negative examples when prior knowledge
about the nature of anomalies is available. We define prior
knowledge as an understanding of the types of anomalies that
are likely to occur. This knowledge can be acquired through
previous experiences. For example, in semiconductor packag-
ing quality control, where products are scanned by a fixed
microscope, images are always acquired in the same pose.
In such a circumstance, geometric transformations will not
simulate potential anomalies. While the potential anomalies
may arise from the voids in the solder which visually look
like a circular hole in the acquired image and we could exploit
this prior knowledge to synthesize negative pairs for adapting
model for anomaly detection.

Specifically, denoting a synthesized negative sample as
𝑡𝑛 (X), to encourage better separation between normal and

abnormal samples we minimize the cosine similarity between
the original image embedding and its negative pair embedding
as below:

L𝑁𝑃 =
1
𝑁𝑇

∑︁
𝑖

𝑓 (X𝑖; Θ̂)⊤ 𝑓 (𝑡𝑛 (X𝑖);Θ)
| | 𝑓 (X𝑖; Θ̂) | | · | | 𝑓 (𝑡𝑛 (X𝑖);Θ) | |

(5)

It is worth noting that the negative contrasting is also carried
out directly on the backbone output features to reflect the
constraints applied to the feature representations. A related
design was presented in [27] for semi-supervised anomaly
detection by minimizing the reciprocal of the distance between
annotated anomalies and normal sample cluster center. Again,
we believe minimizing the cosine similarity is compatible
with the contrastive training objective, which also optimizes
the cosine similarity, and cross-instance positive pair loss
has no risk of having a trivial solution. To differentiate the
augmentations employed, we referred to 𝑡 (X) as positive
augmentation and 𝑡𝑛 (X) as negative augmentation.

The final training loss is a weighted sum of the three loss
terms:

L𝑎𝑙𝑙 = L𝐶𝑜𝑛 + 𝜆𝑃𝑃L𝑃𝑃 + 𝜆𝑁𝑃L𝑁𝑃 (6)

D. Density-based Anomaly Detection
To perform anomaly detection using the learnt representa-

tions, we follow the density-based approach in [15] and fit
a multivariate Gaussian distribution to the few-shot normal
samples. Note that the learnt feature representations must
be L2-normalized before density estimation and inference
because during representation learning, we optimize the cosine
similarity which is agnostic to the magnitude of feature repre-
sentations. Moreover, to increase the amount of data for fitting
the Gaussian distribution we produce 𝑁𝐴 times augmented
samples from the few-shot normal samples. Formally, the
mean 𝜇 and covariance Σ is obtained through maximum like-
lihood estimation as below where D𝑇𝐴 = D𝑇 ∪ D𝑇 ∪ · · · D𝑇︸                   ︷︷                   ︸

𝑁𝐴 times

.

𝜇 =
1

|D𝑇𝐴 |
∑︁

X𝑖 ∈D𝑇𝐴

𝑓 (𝑡 (X𝑖))
| | 𝑓 (𝑡 (X𝑖)) | |

,

𝚺 =
1

|D𝑇𝐴 |
∑︁

X𝑖 ∈D𝑇𝐴

(
𝑓 (𝑡 (X𝑖))

| | 𝑓 (𝑡 (X𝑖)) | |
− 𝜇

) (
𝑓 (𝑡 (X𝑖))

| | 𝑓 (𝑡 (X𝑖)) | |
− 𝜇

)⊤ (7)

The anomaly score is then given by the Mahalanobis dis-
tance as in Eq. 8 and test samples are ranked by the anomaly
score for anomaly detection. We add a small epsilon to the
diagonal entries of Σ to ensure that it is invertible.

𝑑𝐴𝑆 (X) =

√︄(
𝑓 (X)

| | 𝑓 (X) | | − 𝜇

)⊤
𝚺−1

(
𝑓 (X)

| | 𝑓 (X) | | − 𝜇

)
(8)

IV. EXPERIMENT

We evaluate the performance of COFT-AD on three con-
trolled anomaly detection datasets and four industrial defect
identification datasets. We benchmark against state-of-the-
art anomaly detection methods and achieve very competitive
performance. We also carry out ablation studies on individual
components of our methodology and provide further analysis
of its behaviours.
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Fig. 3: (a) Selected examples from the 4 pairs (8 species in total) in the Flowers17 dataset. Two images are shown for each
species. (b) Examples of real-world datasets (industrial images) with subtle variations between normal and anomalous samples.

A. Datasets

To demonstrate the effectiveness of our proposed anomaly
detection method, we use a range of datasets belonging to one
of two types, which we call controlled versus real-world. Their
distinction will now be explained.

1) Controlled Anomaly Detection Tasks: : In the controlled
setup, we design anomaly detection tasks by altering existing
classification benchmarks. We first use the Flowers17 [40]
dataset, which contains 17 classes of flower species, each with
80 images. This dataset helps to test the ability of our method
to perform anomaly detection under a setting of great diversity
within the set of normal data. Indeed, we see significant
variations in data properties such as pose, color, shape and
background within images belonging to the same class, i.e.
high intra-class variance. Furthermore, flowers belonging to
different classes can often exhibit strikingly similar properties,
such as the daffodil and tulip classes. These two factors make
for a particularly challenging anomaly detection task, where
normal data can be highly diverse and anomalies can be subtly
distinct from the normal class. To this end, we manually
choose 4 pairs of two flower classes that are visually similar,
shown in Fig. 3 (a), which do not appear in ImageNet. One
of the two classes is treated as the normal class, while the
other is the anomaly, and we report results with each class
set as the normal or anomalous class separately. 70 images
from the normal class and 10 images from the abnormal
class are reserved for the test set and we evaluate at 5-shot
normal training samples. This experiment has implications for
the application of anomaly detection to agricultural purposes,
e.g. detecting unwanted weeds that are visually similar to the
wanted crops. We also adapt the CIFAR10/100-C [41] datasets

to an anomaly detection problem. Similar to Flowers17, their
classes exhibit high intra-class variation (within each normal
class) and low inter-class variation (between normal and
anomaly classes). We propose an anomaly detection protocol
by treating all corrupted test samples as anomalies for each
class. The dataset contains 5 levels of 15 different corruptions,
e.g., various types of noise, blur and fog. For easy comparison
we choose 9 types of level 4 corruptions, also shown in
Fig. 4. 5000 clean testing samples from each class of original
CIFAR10/100 dataset are used as normal testing samples,
the corresponding corrupted samples of that class are treated
as anomalous test samples. We evaluate at 10-shot normal
training samples for both datasets.

original gaussian noise shot noise

snow

impulse noise glass blur

frost contrast jpeg compression fog

Fig. 4: A selected example of a clean sample with different
corruptions in the CIFAR10-C dataset.

2) Real-world Anomaly Detection Tasks: : To evaluate
our methodology on anomaly detection tasks which occur
in more natural settings, we also use real-world datasets in
our experiments. Under this category, we evaluate 4 industrial
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anomaly detection datasets, including MVTec Dataset [1],
AITEX Dataset [42], Magnetic Tile Defects Dataset [43]
and SemiCon Dataset [44]. Among these datasets foreground
objects are often very well aligned with highly similar vi-
sual patterns, i.e. low intra-class variation and anomalies are
caused by subtle defects, i.e. low inter-class variation. MVTec
Dataset [1] contains 15 object categories, including 10 non-
texture object categories and 5 texture object categories. Each
category contains 60-300 normal samples for training and 30-
400 normal and defect samples for testing. We follow the few-
shot settings from [4] to create 2/5/10-shot anomaly detection
protocols. AITEX Dataset [42] is dedicated to detecting
defects in textile fabric. This dataset consists of 140 normal
sample images and 105 defect sample images with correspond-
ing defect mask for localization. The original image resolution
is 4096×256 pixels and the defects occupy a very small
percentage of pixels. To allow for easier defect identification
and mimicking a realistic defect identification procedure, we
randomly crop out 5 patches of size 256 × 256 pixels from
each image. Then 5/10/50-shot normal patches are randomly
sampled as training examples. In total, test set consists of
600 normal patches and 105 defect patches. Magnetic Tile
Defects Dataset [43] consists of 6 different types of defect
magnetic tile surface images, namely “Blowhole”, “Crack”,
“Fray”, “Break”, “Uneven”, and “Free” (no defects). There
are 1344 images in total, of which 952 images contain defects.
We randomly select 5/10/50-shot normal examples from the
“Free” class as training data and evaluate on the remaining
images for anomaly detection. SemiCon Dataset [44] features
3D images collected from 3D X-ray microscopy (XRM) scans
on integrated circuit packaging interconnects. The original
dataset contains 53 3D images of memory dies and the
anomaly detection task is to identify voids in the solder region:
a large void to solder ratio may indicate defective products.
To create an anomaly detection benchmark, we slice the 3D
images to obtain 2D images. 5/10/50-shot normal images
are randomly selected for training, 110 defect samples and
500 normal samples are used for testing. A few examples
of anomalies from the industrial datasets are presented in
Fig. 3 (b)

B. Competing Methods

We compare against multiple anomaly detection methods,
covering methods based on reconstruction (AE and VAE),
one-class classification (DeepSVDD and CutPaste), generative
models (CFLOW-AD, TDG and RotNet) and self-supervised
learning (RotNet and CSI), in the experiments. We first bench-
mark auto-encoder (AE) employed in [19], which is trained to
reconstruct input images and the difference between input and
reconstructs measures the anomaly score. VAE [45] imposes
constraints on the latent variables to be Gaussian. Multiple
samples are drawn in the latent space and decoded to image
space for measuring anomaly score [46]. DeepSVDD [22]
trains the network by forcing normal training samples to
embed close to a cluster center. The learned cluster center can
later serve as the prototype for anomaly detection by measur-
ing the distance as anomaly score. CutPaste [15] introduced

CutPaste as an augmentation approach to synthesize negative
examples for pretraining feature representation network. It is
worth noticing that CutPaste mimics the real anomalies that
would appear in the MVTec dataset, therefore the effectiveness
of CutPaste does not generalize to other types of anomalies,
e.g. differentiating flower species and corruptions as anomaly.
CFLOW-AD [47] adopted a conditional normalizing flow
model for fast anomaly localization. We adapt CFLOW-AD
to training on few-shot anomaly detection task. TDG [4]
proposed to employ generative model for few-shot anomaly
detection by differentiating image patches into either fake or
one from a list of predefined augmentations. DifferNet [48]
estimates density through normalizing flow with a few support-
ing training samples. The above two approaches are compared
on the MVTec dataset. RotNet [23] proposed a self-supervised
pretraining approach by predicting the augmentations (rota-
tions) applied. This approach is most effective in anomaly
detection on natural semantic images and the advantage may
diminish on industrial images where the pose of background
is naturally more diverse. CSI [37] proposed to contrast
distribution shifted augmented images with original images
to increase the gap between normal and abnormal samples.
This is similar to maintaining only the negative pair loss
proposed in this work. COFT-AD (w/o np) optimizes on the
combination of contrastive loss and cross-instance positive pair
loss. Assuming prior knowledge of anomalies is available,
COFT-AD (w/ np) incorporates the negative pair loss and
optimizes on the combination of all three losses. Among these
methods, CutPaste and COFT-AD (w/ np) are built upon the
prior knowledge of anomalies while other methods do not
make explicit assumptions on how the anomalies appear.

C. Experiment Details

Training Details: For all experiments, we use the
ResNet18 [49] backbone for feature extraction. For all com-
peting methods, we initialize backbone weights with ImageNet
pretrained weights. We set the weight for cross-instance pos-
itive pair loss as 𝜆𝑃𝑃 = 0.8 and the weight for negative pair
loss as 𝜆𝑁𝑃 = 0.6. We use the Adam optimizer [50] for all
experiments with learning rate initialized to 3×10−4, 𝛽1 = 0.9
and 𝛽2 = 0.99. We fix the batch size to 64, thus creating
64 pairs for contrastive training. To generate cross-instance
pairs, we randomly permute the 64 images and each of the 64
image is paired with a randomly permuted one, resulting in 64
positive pairs. Similarly, we pair each image to its negatively
augmented one to create another 64 negative pairs. For density
model fitting, we use 𝑁𝐴 = 10. The area under the ROC
(AUROC) is used to assess performance, where anomalies are
treated as the positive class.
Data Augmentation: We aim to synthesize common variation
within normal samples with positive augmentation and syn-
thesize potential anomalies with negative augmentation. For
Flowers17 Dataset, we adopt CutPaste [15] for negative aug-
mentation 𝑡𝑛 (X) and randomly affine transformation and color
jittering for positive augmentation 𝑡 (X). For CIFAR10/100-C,
positive augmentation includes random affine transformation
while negative augmentation consists of blurring and randomly
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perturbing image brightness and contrast. For all industrial
dataset, positive augmentation consists of random affine trans-
formation, blurring and grayscaling and negative augmentation
consists of CutPaste [15].

D. Results on Controlled Anomaly Detection Datasets

In this section, we report on the evaluations for anomaly
detection on controlled anomaly detection datasets. On the
Flowers17 dataset, we adapt ImageNet pretrained weights
to each pair of flower species for anomaly detection. We
report the results on the 4 pairs by swapping the two species
as normal and abnormal in Tab. I. We make the following
observations from the results. First, we notice that COFT-AD
outperforms competing methods on most pairs for anomaly
detection. Importantly, without any prior knowledge on the
anomalies, COFT-AD wins on 5 out of 8 pairs, suggesting
the effectiveness of contrastive fine-tuning. Additionally, when
negative pairs are included, COFT-AD (w/ np) could be further
improved, and there is a significant gap between CutPaste
and COFT-AD where negative samples are synthesized in the
same way. We argue that the advantage of COFT-AD is due to
explicitly encouraging a tight cluster among normal samples.
In contrast, CutPaste formulates anomaly detection as a binary
classification task and could suffer from inaccurate synthesis
of anomalies through cut and paste augmentation.

We further report benchmarks on CIFAR10-C and
CIFAR100-C with 10-shot training samples. In a similar fash-
ion to the Flowers17 dataset, we adapt ImageNet pretrained
weights to each individual semantic class. For CIFAR100-
C, we choose the 20 super-classes as the semantic class for
simplicity. We present the anomaly detection results on each
semantic category of CIFAR10-C in Tab.II. We first observe
from the results that, on average, our method (COFT-AD),
both with and without prior knowledge of negative pairs (w/
np or w/o np), outperforms competing methods by a clear
margin. The closest competing method, CutPaste, is 4% lower
than COFT-AD (w/ np). This is in contrast to the extraordinary
performance demonstrated on MVTec by CutPaste, as shown
in the following section. We attribute this to the fact that
the corruptions in CIFAR10-C are diverse and may not be
easily synthesized by the augmentation methods, i.e. Cut-
Paste, specifically tailored for the MVTec dataset. We further
benchmark on CIFAR100-C and compare with DeepSVDD
and CutPaste. We draw similar conclusions from the results.
Our method is still stronger than CutPaste with a clear margin.
This is caused by the mismatch between the negative samples
synthesized by CutPaste and corruptions (anomalies) in the
dataset.

E. Results on Real-world Datasets

In this section, we explore identifying defects on real-world
industrial images. We first evaluate the few-shot anomaly de-
tection performance on MVTec dataset with results presented
in Tab. IV. We make the following observations. First, without
any specific prior knowledge on the anomalies, our method
(COFT-AD (w/o np)) outperforms all competing methods by

a clear margin. Furthermore, with prior knowledge on the po-
tential anomalies, our method (COFT-AD (w/ np)) still outper-
forms CutPaste with the same negative augmentations in the 2-
shot and 5-shot settings. We are only slightly behind CutPaste
in the 10-shot case. Both observations suggest the effectiveness
of contrastive adaptation and cross-instance positive pair loss.
We further observe that CutPaste exhibits a significant lead
on leather, wood and toothbrush images. We attribute this
to the fact that these categories contain many anomalies that
can be synthesized from CutPaste and scar augmentation: the
“cut” defect for the “leather” category, the “scratch” defect
for “wood” and scar like defects for “toothbrush”. In contrast,
COFT-AD relies more on adaptation from the pretrained model
and learning from few-shot normal samples. As a result, its
performance is generally better on more diverse types of
objects: in the 2-shot setting, COFT-AD outperforms CutPaste
on 8 of the 15 categories while CutPaste is winning on 4/15
categories. Finally, we make the observation that our proposed
method does not benefit substantially upon more available
normal training samples. We believe this is due to the repetitive
patterns of normal data causing low intra-class variation within
normal data distribution. For example, the normal samples
of MVTec dataset all look very similar, thus a few normal
samples are enough for learning good model for predicting
anomalies.

We further evaluate defect identification performance on
another three industrial datasets, namely SemiCon, AITEX
and MagneticTile, with results presented in Tab. V. The
following observations are drawn from the results. First,
without any prior knowledge, COFT-AD (w/o np) achieves the
state-of-the-art performance under lower budgets of available
training samples (5 and 10 shots) on all three datasets. It is
only slightly behind DeepSVDD at 50-shot on AITEX. These
results suggest adapting pretrained models to target domain
is effective for realistic industrial image defect identification
tasks. Second, methods demonstrating strong performance on
MVTec dataset may not generalize to other types of defects.
For example, while CutPaste is one of the best performing
methods on MVTec, its performance on SemiCon and AITEX
is much worse than more traditional approaches. One potential
reason for this poor performance is that the synthesized
negative samples used in CutPaste are not representative of
the defects in SemiCon and AITEX datasets.

F. Ablation Study

In this section, we investigate the effectiveness of the
individual components using the CIFAR10-C dataset as the
anomalies are well-controlled. In particular, we demonstrate
the importance of contrastive training on few-shot target
domain normal samples (Contrast. Train), incorporating cross-
instance positive pair loss (Positive Pair Loss) and incorporat-
ing the negative pair loss (Negative Pair Loss). We further
evaluate incorporating L2 normalization (L2 Norm) during
anomaly detection density model fitting and inference. We
present the ablation study results in Tab. VI. We make the
following observations from the results. First, as we ex-
pected, reusing ImageNet pretrained weights for downstream
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TABLE I: 5-shot anomaly detection performance on the Flowers17 dataset with Normal/Anomaly class setup. A / B with
Norm. / Abn. indicates treating species A as normal and B as abnormal and vice versa for with Abn. / Norm. All numbers
are reported as AUROC in %.

Crocus / Bluebell Daffodil / Tulip Lily Valley / Windflower Buttercup / Cowslip
Norm. / Abn. Abn. / Norm. Norm. / Abn. Abn. / Norm. Norm. / Abn. Abn. / Norm. Norm. / Abn. Abn. / Norm.

AE 70.93 53.49 66.67 68.13 68.27 52.53 54.56 62.27
VAE 82.00 63.87 62.53 70.67 63.87 53.87 66.53 53.33
DeepSVDD 77.47 48.00 49.02 45.06 66.93 71.07 61.47 60.93
CSI 74.13 46.05 55.87 53.87 72.80 81.60 64.53 88.67
CFLOW-AD 83.73 52.93 67.60 44.27 81.60 72.93 76.40 90.07
COFT-AD (w/o np) 89.47 64.80 68.00 71.49 80.27 76.39 83.33 89.47

CutPaste 67.98 53.33 59.73 64.08 54.80 75.47 73.53 48.67
COFT-AD (w/ np) 92.13 59.47 74.13 75.47 87.33 79.20 74.53 98.13

TABLE II: 10-shot anomaly detection on CIFAR10-C dataset. All numbers are reported as AUROC in %.

Airpl. Auto. Bird Cat Deer Dog Frog Horse Ship Truck Avg.

AE 54.38 53.67 54.86 53.79 56.15 54.30 51.70 54.79 55.89 50.38 53.99
VAE 57.47 52.17 56.32 56.11 58.67 57.09 59.18 54.06 56.90 50.61 55.86
DeepSVDD 63.27 61.64 60.75 60.71 61.54 62.11 63.00 59.83 63.72 67.29 62.37
CSI 56.18 59.07 57.72 56.65 55.12 58.49 60.39 61.69 55.91 62.96 58.42
RotNet 69.21 53.21 66.03 64.00 67.30 67.84 70.20 70.84 59.05 63.04 64.07
COFT-AD (w/o np) 71.68 64.68 75.74 74.38 76.55 74.69 81.40 79.10 60.02 74.53 72.27

CutPaste 58.62 73.01 70.56 75.57 68.65 71.32 72.26 70.82 72.53 66.79 70.01
COFT-AD (w/ np) 72.23 67.66 78.41 77.45 75.33 75.20 75.35 75.88 72.20 75.85 74.56

TABLE III: Anomaly detection on CIFAR100-C dataset. Per super-class performance is reported. All numbers are reported as
AUROC in %.

Sup.Cls. 0 Sup.Cls. 1 Sup.Cls. 2 Sup.Cls. 3 Sup.Cls. 4 Sup.Cls. 5 Sup.Cls. 6 Sup.Cls. 7 Sup.Cls. 8 Sup.Cls. 9

AE 50.47 51.93 58.99 50.19 50.13 55.31 59.30 55.47 52.53 51.71
VAE 50.43 55.85 57.55 56.59 58.7 55.30 56.30 56.92 57.62 56.69

Deep SVDD 75.10 73.48 70.35 63.52 73.53 76.19 69.91 74.76 79.70 67.13
CutPaste 75.96 69.59 70.51 75.71 72.50 74.14 76.22 76.69 71.79 78.31

COFT-AD (w/ np) 77.61 66.69 77.84 76.21 79.93 78.17 73.33 78.80 74.63 81.17

Sup.Cls. 10 Sup.Cls. 11 Sup.Cls. 12 Sup.Cls. 13 Sup.Cls. 14 Sup.Cls. 15 Sup.Cls. 16 Sup.Cls. 17 Sup.Cls. 18 Sup.Cls. 19 Avg

52.57 55.15 51.61 57.44 59.12 50.91 55.66 56.36 51.96 55.18 54.10
60.99 50.21 51.79 52.16 60.96 57.27 61.95 56.61 57.42 59.26 56.53
70.00 73.17 60.82 56.91 66.36 65.81 60.60 69.88 70.52 71.30 69.24
80.28 75.83 77.92 78.56 70.87 78.84 72.83 71.63 72.97 75.61 74.84
81.27 75.59 80.11 79.98 75.56 80.04 73.65 77.54 77.16 78.13 77.17

anomaly detection yields significant improvement in perfor-
mance (52.54% → 67.32%). This suggests the significance
of a good representation for anomaly detection. Adapting
pretrained model to the target distribution through contrastive
training further improves 2% in average (67.32% → 70.05%).
To encourage feature embedding suitable for density-based
anomaly detection, we further incorporate the positive pair loss
and this again yields additional 3% improvement (70.05% →
73.68%). As an alternative approach, one could encourage all
normal samples’ features to embed close to a fixed cluster
center (F.C.) following [22]. However, as the cluster center
must be fixed through the first forward pass, this could
pose too much constraint on the representation learning and
yield inferior results (68.21%). Finally, when we combine
negative pair loss, this gives a final boost of performance to
74.56%. We also hypothesize that L2 normalization on feature
representation is necessary and the ablation study validate the
hypothesis. By removing the L2 normalization on anomaly
inference features, the performance drops from 74.56% to
72.11%, indicating the normalization is essential to fitting

better density model and distance-based anomaly detection.
Additionally, we replaced the backbone model with ResNet50
in the same controlled experiments to validate that our method
performs well across different backbones. It is noteworthy that
using only ImageNet pretrained weights for ResNet50 yields
lower performance compared to ResNet18. This is attributed
to the fact that an overly expressive representation may not
necessarily be advantageous for anomaly detection [51].

V. FURTHER ANALYSIS

In this section, we provide additional evaluations on quali-
tative results and discuss when incorporating negative samples
should be employed.

A. Qualitative Analysis

We present qualitative results on the Flowers17 dataset to
examine both successful and failure cases in Fig. 5. Specif-
ically, we treat “tulip” as normal class and “daffodil” as
abnormal class. We first visualize the 5-shot training samples
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TABLE IV: Few-shot anomaly detection on MVTec dataset. Per-category AUROC is reported for all competing methods. All
numbers are in %. The results of DiffNet∗ and TDG∗ are derived from [4], where − indicates per-class results are not available.

bottle cable caps. hazel. metal. pill screw tooth. transis. zipper carpet grid leather tile wood avg.

2
sh

ot

AE 73.49 64.22 62.43 73.54 35.97 75.19 35.56 73.33 48.92 40.73 22.11 45.13 31.52 73.35 58.42 53.26
VAE 68.73 61.83 60.47 73.82 41.20 76.08 39.98 72.22 68.83 38.16 25.08 40.85 37.40 72.69 44.91 54.75
DeepSVDD 85.79 66.06 51.62 53.39 50.44 77.27 51.23 69.72 58.04 59.30 70.06 38.10 40.42 81.02 51.23 60.28
COFT-AD (w/o np) 88.06 59.05 58.82 60.77 68.51 65.55 56.48 73.63 72.84 70.74 76.00 61.18 63.11 68.25 77.85 68.06

CutPaste 86.39 64.59 61.56 73.59 49.92 66.91 41.93 82.04 55.53 59.97 52.26 46.25 83.82 71.28 84.79 65.38
COFT-AD (w/ np) 90.95 66.55 59.38 68.82 68.96 66.68 54.90 74.81 74.33 72.82 73.18 61.77 65.28 69.64 79.85 69.86

5
sh

ot

AE 76.59 65.59 72.92 73.64 49.61 76.73 40.32 75.00 64.79 59.95 38.76 42.61 43.72 66.56 74.04 61.39
VAE 70.24 62.52 73.08 74.57 41.96 76.55 41.55 79.51 72.92 59.50 39.32 56.16 45.99 60.22 90.16 63.05
DeepSVDD 86.19 68.29 60.23 54.07 52.16 78.42 52.15 81.39 69.04 74.80 51.54 51.55 58.20 82.83 93.51 67.59
CSI 80.55 60.48 62.07 74.40 59.83 69.29 32.71 79.44 55.71 63.71 56.17 39.53 51.56 55.38 75.96 61.12
CFLOW-AD 98.17 81.65 73.12 88.25 74.88 68.22 45.09 82.50 84.79 83.53 73.48 50.96 87.84 91.59 92.37 78.43
DifferNet∗ - - - - - - - - - - - - - - - 72.10
TDG∗ - - - - - - - - - - - - - - - 77.90
COFT-AD (w/o np) 94.58 70.67 74.06 78.29 79.66 81.56 62.70 87.18 78.08 75.03 84.67 62.31 74.90 78.34 89.66 78.11

CutPaste 98.41 80.32 69.20 89.90 72.24 82.85 59.13 90.89 68.56 68.89 73.13 49.94 83.93 91.50 96.08 78.33
COFT-AD (w/ np) 95.73 78.05 74.26 86.89 78.57 81.31 62.26 88.81 74.80 75.70 79.90 61.85 77.92 75.34 90.12 78.76

10
sh

ot

AE 81.91 69.34 73.54 74.14 57.72 78.40 50.07 93.11 66.49 60.29 41.43 49.96 45.07 72.62 95.70 64.92
VAE 82.06 64.05 73.59 75.04 56.74 78.07 50.03 91.66 73.41 60.19 44.78 56.05 47.45 76.55 94.56 67.02
DeepSVDD 86.75 68.85 65.05 74.04 70.82 78.42 53.13 86.39 69.08 77.28 52.07 51.71 58.27 86.33 94.02 71.48
CSI 83.44 62.65 64.30 77.07 61.98 71.78 33.89 82.30 57.71 66.00 58.19 40.95 53.41 57.37 78.69 63.32
CFLOW-AD 99.50 84.58 75.75 91.42 77.57 70.67 46.71 85.47 87.84 86.53 76.12 52.79 91.00 94.88 95.69 81.10
DifferNet∗ - - - - - - - - - - - - - - - 73.60
TDG∗ - - - - - - - - - - - - - - - 78.00
COFT-AD (w/o np) 97.84 71.07 79.23 78.72 80.57 82.81 61.85 95.12 87.21 83.71 84.73 63.10 76.88 81.14 89.69 80.92

CutPaste 98.71 81.83 83.15 94.47 88.92 85.63 64.55 91.50 70.01 86.90 83.92 55.13 99.50 91.81 96.21 84.82
COFT-AD (w/ np) 99.03 83.49 78.38 87.25 79.47 82.55 63.92 94.71 87.21 84.45 79.95 63.14 78.88 81.14 97.15 82.71

TABLE V: Few-shot defect identification results on additional three industry image datasets. AUROC is reported as evaluation
metrics. All numbers are in (%).

SemiCon AITEX Magnetic Tile
5-shot 10-shot 50-shot 5-shot 10-shot 50-shot 5-shot 10-shot 50-shot

AE 65.38 70.24 71.74 47.01 60.59 63.30 51.58 52.66 54.70
VAE 72.42 73.53 80.14 52.99 66.36 67.88 51.90 53.40 54.30
DeepSVDD 52.02 71.40 79.09 70.15 74.40 80.07 54.80 55.90 57.73
RotNet 55.13 75.55 80.45 71.20 75.19 80.02 55.69 57.14 60.00
CutPaste 48.71 71.60 75.03 50.23 69.58 79.83 57.82 61.00 62.14
COFT-AD (w/o np) 78.87 80.72 82.00 73.44 77.45 78.14 58.23 61.93 63.55

TABLE VI: Ablation study on CIFAR10-C 10-shot FSAD. CIPP stands for cross-instance positive pair.

Pretrained Weights Contrast. Train Positive Pair Loss Negative Pair Loss L2 Norm ResNet18 ResNet50

- - - - ✓ 52.54 54.04
ImageNet - - - ✓ 67.32 66.37
ImageNet ✓ - - ✓ 70.05 68.14
ImageNet ✓ F.C. [22] - ✓ 68.21 70.00
ImageNet ✓ C.I.P.P. - ✓ 73.68 75.00
ImageNet ✓ C.I.P.P. ✓ ✓ 74.56 76.69
ImageNet ✓ C.I.P.P. ✓ - 72.11 74.18

in the first row of Fig. 5, which covers different stages
of the flower (bud to full-blown). For each testing sample,
we calculate a normalized anomaly score as the percentile
among all testing samples. In the first row of normal testing
samples (TEST - Tulip (Normal)), we show the normal testing
samples with low anomaly scores. We clearly observe that
testing samples with similar pose and shapes to the few-
shot training samples are predicted as normal with high
confidence (low anomaly score). In the second row of images,
we further present normal testing samples with high anomaly
score. We observe these false positive samples are either
taken from different viewpoints (2-4 cols) or look significantly

different (round petals in 6-7 cols) from the few-shot training
samples. Lastly, we present the abnormal testing samples in the
last row of Fig. 5. The first example (1st col) is predicted by
most methods with low anomaly score because the petals are
pointy, resembling the tulip flowers in the training set. Other
examples with round petals (3-7 cols) are well predicted by
COFT-AD with high anomaly score.

B. Qualitative Examination of Representation Learning
We provide qualitative observations into the advantage of

incorporating the proposed losses through t-SNE visualiza-
tion [52] of test data representations. Specifically, we randomly
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TEST - Tulip (Normal)

TEST - Daffodil (Abnormal)

TRAIN - Tulip (Normal)

Fig. 5: Qualitative evaluation of anomaly detection results on Flowers17 dataset. Each testing sample is accompanied with
normalized anomaly scores predicted by different competing methods.

select 1,500 testing samples from CIFAR10-C dataset for
visualization. The feature points are projected into 2D space
and visualized in Fig. 6. The feature embedding with ImageNet
pretrained weights only, (a) w/o contrastive fine-tuning, shows
a substantial overlap between normal and abnormal samples.
When contrastive training is applied, (b) w/ contrastive fine-
tuning, we observe a clear seperation between normal and
abnormal samples. When additional positive pair loss, (c)
w/ pp Loss, and negative pair loss, (d) w/ np Loss, are
incorporated, the normal samples are further grouped into
a tighter cluster with larger distinction between normal and
abnormal samples.

C. Incorporating Negative Examples

As we discussed, incorporating negative example during
adaptation is not always beneficial. The advantage hinges
on whether prior knowledge on abnormal sample distribution
is available or not. To verify this hypothesis, we evaluate
incorporating negative pair loss on 3 industry datasets, Semi-
Con, AITEX and Magnetic Tile. SemiCon dataset features
anomalies that are quite different from MVTec, while AI-
TEX and Magnetic Tile are relatively more similar to the
texture categories of MVTec. We choose CutPaste [15] as
negative augmentation for these 3 datasets. The results in
Tab. VII demonstrate that when the negative augmentation
is substantially different from the real anomalies, e.g. the
void circles in SemiCon dataset, incorporating negative pair
loss with inappropriate augmentation may harm performance
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(a) w/o contrastive fine-tuning (b) w/ contrastive fine-tuning

(c) w/ pp Loss (d) w/ np Loss

Fig. 6: T-SNE visualization of anomaly detection testing
data on selected testing samples from CIFAR10-C dataset by
incrementally incorporating different loss terms. Blue and red
colors indicate normal and abnormal samples respectively.

(78.87 → 62.97%). On the contrary, when anomalies can be
simulated, even imperfectly, e.g. Magnetic Tile dataset, incor-
porating negative pair loss will further improve performance.
Overall, we conclude that incorporating negative pair loss is
most helpful when prior knowledge on the potential anomalies
is concrete and anomalies can be simulated through negative
augmentation. Our model without negative pair loss is suitable
for tasks without prior knowledge or when generating negative
augmentation is difficult.

TABLE VII: Effect of incorporating negative pair loss with
CutPaste augmentation on 10-shots industry image datasets.

SemiCon AITEX Magnetic Tile

COFT-AD (w/o np) 78.87 73.44 58.23
COFT-AD (w/ np) 76.29 65.54 59.45

D. Comparison of Anomaly Scoring Function
In this section, we further validate the effectiveness of

contrastive learning-extracted features by comparing various
anomaly scoring functions. We conducted comparisons with
another classic non-parametric classifier, KNN [53], Deep Iso-
lation Forest [54], which is specifically designed for anomaly
detection, and PatchCore [8]. The resultsVIII demonstrate
that the features obtained through contrastive learning ex-
hibit stable performance across different anomaly detection
models. Specifically for PatchCore, the method is designed
for industrial defect detection and not applicable on dataset
with high intra-class variations. When the intra-class variation
is excessively large, the memory bank may not adequately
represent the dataset’s features, and anomalies can not be well-
captured by local features.

TABLE VIII: Comparison between different anomaly scoring
functions. Experiments on Flower17 dataset, Daffodil (normal)
/ Tulip (abnormal).

Gaussian kNN [53] Isolation Forest [54] PatchCore [8]

ImageNet Pretrained 52.40 44.27 50.80 53.20
COFT-AD (w/o np) 68.00 60.55 66.00 57.45
COFT-AD (w/ np) 74.13 77.47 73.33 59.90

(a) w/o contrastive fine-tuning (b) w/ contrastive fine-tuning

(c) w/ pp loss (d) w/ np loss

Fig. 7: Comparing different ablated models through anomaly
score distributions.

E. Distribution of Anomaly Scores

In this section, we compare different ablated models through
visualizing the distribution of anomaly scores on CIFAR10-
C few-shot anomaly detection task. Specifically, we compare
a) w/o contrastive finetuning; b) w/ contrastive finetuning; c)
method b), additionally w/ PP loss; and d) method c), addition-
ally w/ NP loss. We make the following observations from the
results in Fig. 7. First, directly using the model pretrained on
ImageNet, a) w/o contrastive fine-tuning, fails to differentiate
normal and abnormal samples as the two distributions are
almost the same. With contrastive fine-tuning on target data,
b) w/ contrastive fine-tuning, we see a clear gap between
normal and abnormal distributions, suggesting better anomaly
detection performance. By further incorporating the positive
pair loss, c) w/pp loss, the gap between two distributions
becomes more significant. Finally, incorporating negative pair
loss, d) w/ np loss, is most effective for differentiating normal
from abnormal samples.

F. Imbalanced Anomaly Detection

The ratio between normal and abnormal samples could have
an impact of anomaly detection performance. Since the ratio
between normal and abnormal samples does not affect model
training, we implement a controlled experiment where we
manually decrease the number of anomalies in the SemiCon
dataset. Specifically, we fix the normal samples to 500 and
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randomly subsample 5, 10, 20 and 50 abnormal samples,
respectively indicating 1%, 2%, 4%, 10%, abnormal to normal
ratios, for evaluation. The results in Tab. IX demonstrate the
superiority of proposed method against existing competing
methods.

TABLE IX: Evaluation of anomaly detection under imbal-
anced anomaly samples.

#Anomalies 5 (1%) 10 (2%) 20 (4%) 50 (10%)

DeepSVDD 52.01 49.71 49.97 52.40
CutPaste 86.31 83.82 72.82 74.31
VAE 80.56 78.12 67.67 73.91
AE 62.12 65.52 76.83 74.39
COFT-AD 88.36 86.50 85.87 80.72

G. Exploration on the Number of Augmentation 𝑁𝐴 for
Anomaly Scoring

In this section, we compared the results under different 𝑁𝐴.
The results in X show that increasing N_A leads to a certain
degree of improvement in performance. However, it comes
with an increase in computational complexity and time costs
and the overall anomaly detection accuracy saturates after
increasing the number of augmentations.

TABLE X: Comparison between using different 𝑁𝐴. Ex-
periments on Flower17 dataset, Daffodil (normal) / Tulip
(abnormal).

𝑁𝐴 1 5 20 50

COFT-AD (w/o np) 66.93 68.00 69.39 70.01
COFT-AD (w/ np) 70.13 74.13 76.15 77.70

VI. CONCLUSION

Unsupervised anomaly detection often requires training on
large unlabeled normal samples. Such anomaly-free dataset is
not always available before the inference stage and anomaly
detection may have to be carried out with limited training
samples. To fill this gap, we proposed a few-shot anomaly
detection approach through fine-tuning a model pretrained on
large external image collections to few-shot normal samples
from the target task. We achieve this fine-tuning by optimiz-
ing a contrastive loss and cross-instance positive pair loss.
When prior knowledge on possible anomalies is available we
further incorporate a negative pair loss to separate normal
sample embeddings from the synthesized negative samples.
We extensively evaluated the performance of the proposed
method on three controlled anomaly detection datasets and
four real industrial defect detection datasets. Our method
achieved state-of-the-art performance on all datasets when
only a handful of normal samples are available. Finally, we
show that the benefit of using synthetic negative samples is
task-dependent and should only be considered when accurate
prior knowledge is available. We also notice that the proposed
contrastive training method does not significantly benefit from
more normal samples for industrial anomaly detection tasks
due to the low intra-class variation.
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