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Abstract. As point cloud data increases in prevalence in a variety of
applications, the ability to detect out-of-distribution (OOD) point cloud
objects becomes critical for ensuring model safety and reliability. How-
ever, this problem remains under-explored in existing research. Inspired
by success in the image domain, we propose to exploit advances in 3D
vision-language models (3D VLMs) for OOD detection in point cloud
objects. However, a major challenge is that point cloud datasets used
to pre-train 3D VLMs are drastically smaller in size and object diversity
than their image-based counterparts. Critically, they often contain exclu-
sively computer-designed synthetic objects. This leads to a substantial
domain shift when the model is transferred to practical tasks involv-
ing real objects scanned from the physical environment. In this paper,
our empirical experiments show that synthetic-to-real domain shift sig-
nificantly degrades the alignment of point cloud with their associated
text embeddings in the 3D VLM latent space, hindering downstream
performance. To address this, we propose a novel methodology called
SODA which improves the detection of OOD point clouds through a
neighborhood-based score propagation scheme. SODA is inference-based,
requires no additional model training, and achieves state-of-the-art per-
formance over existing approaches across datasets and problem settings.

Keywords: out-of-distribution detection · point clouds · vision-language
models

1 Introduction

Out-of-distribution (OOD) detection is crucial for ensuring the safe and reli-
able deployment of models in practical applications. It has received significant
research attention for 2D images, but remains largely unexplored in the con-
text of 3D point clouds. The detection of unknown 3D objects poses a critical
challenge in important applications including robotics, autonomous driving, and
healthcare.
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Vision-language models (VLMs), such as CLIP [25], have proven effective
at OOD detection in image data. OOD inputs are detected by their low cosine
similarity to the text embeddings of in-distribution (ID) class labels. Recently,
several 3D VLMs incorporating point clouds into this multi-modal latent space
have emerged. These models demonstrate strong performance in point cloud
classification, but have yet to be evaluated for OOD detection.

A major advantage of VLMs is that they only require ID class labels, not
labeled examples of ID data, due to their extensive pre-training on broad data.
This is particularly useful in the context of point cloud data, which are typi-
cally more expensive to collect and annotate than images. However, point cloud
datasets used to pre-train 3D VLMs are also much more limited in size and
object diversity than their image counterparts. Moreover, they typically contain
only synthetic, computer-designed objects. This results in domain shift when
the model is transferred to practical downstream tasks that involve real objects
scanned from the physical environment. Figure 1 shows a synthetic chair from
ShapeNet [3] and a real chair from ScanObjectNN [28]. Real data can diverge
from synthetic data due to several phenomena, such as: non-uniform point den-
sity, sensor noise, occlusion, background objects and physical imperfections. As
most practical tasks involve real data, it is crucial that models are robust to this
domain shift if they are to be deployed in practice.

Fig. 1: Example of a synthetic chair sample (left) and real chair sample (right).

In this paper, we show through empirical experiments that “synthetic-to-real"
domain shift hinders the alignment of the embeddings of real point clouds with
their text labels in the latent space of 3D VLMs, evidenced by the degradation in
classification performance of real objects. Moreover, we observe that the sever-
ity of this degradation has a strong correlation with the severity of the domain
shift. However, we also observe that the model is effective at clustering real data
by class in the latent space, suggesting that the model maintains an ability to
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distinguish between different classes of real objects. These observations moti-
vate our proposed methodology for point cloud OOD detection, called Scoring
for Out-of-Distribution Detection through Aggregation (SODA). We use the
similarity of point clouds to ID class labels to initialize OOD scores, followed
by an important score refinement step based on a neighborhood-based score
propagation scheme which accounts for the severity of domain shift through dy-
namic ‘source-similarity’ weighting. We conduct comprehensive experimentation
to evaluate our approach and find that it significantly improves OOD detection
without additional fine-tuning of the backbone model.

In summary, our contributions are as follows:

– We investigate the effect of synthetic-to-real domain shift on 3D VLMs and
find a degradation in the alignment of point cloud and text embeddings.

– We propose SODA, a novel methodology to improve OOD detection in do-
main shifted point-clouds via domain shift-aware neighborhood propagation.

– We show that this approach achieves state-of-the-art performance through
rigorous experiments and ablation study.

The code to reproduce our experiments is available online.

2 Related Work

Numerous methods have been proposed for OOD detection in image data. No-
tably, MSP [11] uses the maximum softmax probability assigned to a sample
by a classification model trained on ID classes, and subsequent methods adopt
a similar approach using different confidence measures [14, 19, 20, 27]. However,
neural networks are known to make overly confident predictions even for OOD
data [10]. OOD point cloud detection remains comparatively under-explored,
and existing studies mostly focus on adapting established methods to point-
cloud feature extraction models such as PointNet++ [23] and DGCNN [31]
in [1], and PointPillars [17] in [13], VAEs [21], and teacher-student models [2].
OpenPatch [24] measures the distance of test sample patches to a memory bank
containing patches of ID samples.

Recently, strong performance has been achieved in image-based OOD de-
tection with vision-language models [6, 8, 9, 30]. VLMs are typically trained on
massive-scale image datasets that encompass a diverse range of classes, domains,
and environments. This extensive exposure enables the model to learn rich vi-
sual representations, enhancing its ability to generalize across domains. In the
3D VLM space, two approaches have emerged. One approach is to project point
cloud data into image inputs for existing 2D VLMs, examples of which include
PointCLIP [37] and CLIP2Point [15]. Another approach is to introduce an ad-
ditional point cloud encoder and train it to align point cloud embeddings with
their paired image and text inputs extracted from a fixed 2D VLM. ULIP [34]
and ULIP-2 [35] are notable examples, and the latter achieves state-of-the-art
performance in downstream tasks.
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As mentioned, point cloud datasets used to pre-train 3D VLMs are relatively
limited in size and object diversity, limiting their generalization. Significant re-
search attention has focused on domain adaptation to real point cloud data [16].
Common approaches include domain-invariant training or fine-tuning with task-
specific data. In an OOD setting, this means adapting to ID data for each task
individually, which is cumbersome or even infeasible in data-scarce scenarios. It
also risks worsening performance through catastrophic forgetting [24]. As such,
we focus on leveraging the pre-trained embedding space for training-free adap-
tation to synthetic-to-real domain shift, without adjusting model parameters.

3 Motivation

In this section, we investigate the effect of synthetic-to-real domain shift on the
embeddings learnt by 3D VLMs. In our analysis, we use synthetic samples from
ModelNet40 [33] and real samples from ScanObjectNN [28]. We focus on only
the classes which are common to both datasets (listed under SR1 and SR2 in
Table 1) in order to focus on the effect of domain shift and not the semantic
differences between classes. We use ULIP-2 [35] as our fixed backbone VLM due
to its superior performance. ULIP-2 trains a PointBERT point cloud encoder to
align point cloud embeddings with paired image and text caption embeddings
learnt by a 2D VLM. We extract the embeddings of both synthetic and real
point clouds and make several observations:

Table 1: Class splits for experiments with ScanObjectNN. Classes under SR1 and
SR2 overlap with classes of the same name in ModelNet40, but classes under SR3
classes do not.

SR1 SR2 SR3

chair bed bag
shelf toilet bin
door desk box
sink table pillow
sofa display cabinet

Observation 1: Degraded text-point cloud alignment Following [35], we
obtain text embeddings for each class label by creating class-based text prompts
from a set of templates (more details in Section 4.2). We classify each sample
according to their maximum cosine similarity to these text embeddings. With
this setup, we observe that classification accuracy drops from 94.27% on
synthetic data to 73.83% on real data. This suggests a significant degrada-
tion in the alignment of real data with their associated text labels in the latent
space compared with synthetic data. This is detrimental to OOD detection, as
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OOD data may be inappropriately matched to ID class labels, resulting in false
negative errors, and vice versa. However, this degradation is not uniform. We
take the average similarity of real samples to their 10 nearest synthetic samples
as a measure of how ‘close’ they are to the source domain. In Figure 2, we see
that this ‘source similarity’ has a direct, linear relationship with classification ac-
curacy. In other words, real samples that are closer to the source domain
are better aligned with the text labels.
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Fig. 2: Classification accuracy (%) of real ScanObjectNN point clouds sorted by
cosine similarity to synthetic ModelNet40 samples.

Observation 2: Strong class-based clustering Our second observation is
that real samples are strongly clustered by class. Figure 3 visualises the UMAP
projections [22] of real point samples, with their colour corresponding to their
class label. We see that the vast majority of samples are well clustered according
to class. This suggests that, despite a weakened alignment with the text embed-
dings, the model retains an ability to distinguish between examples of different
classes of real objects. This is promising for OOD detection, as it means that we
can expect a real sample from an ID class to be mostly neighbored by other sam-
ples of the same ID class, and vice versa for OOD samples. These observations
provide motivation for our proposed methodology.

4 Methodology

Our work most closely relates to [36], which exploits neighborhood structure
within the test set for classification. However, a major difference in OOD de-
tection is that we do not know the label space of OOD samples, which can be-
long to any unknown class, therefore it is a more challenging open-set problem.
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Fig. 3: UMAP projections of real domain test point clouds colored by their class.

Our methodology is inspired by the label propagation algorithm [39], a semi-
supervised approach to classification which propagates class information from
labeled to unlabeled data. However, as all test data is unlabeled in our setting,
we have no ground truth information to propagate. [32] boosts the detection of
OOD nodes within a graph by propagating energy-based scores between neigh-
boring nodes. We explore the potential of this framework beyond graph data,
particularly for addressing the challenges of domain shift in non-structured data,
exploiting the strong class-based latent clustering of 3D VLMs to improve OOD
detection performance in a transductive setting. Our methodology is illustrated
in Figure 4.

4.1 Problem Statement

We have a set of N ID class labels C = {C1, C2, ..., CN}, and an unlabeled test
set X, consisting of both ID and OOD real data. A sample is ID if it belongs to
any ID class Ci ∈ C and OOD otherwise. We aim to distinguish between ID and
OOD samples by devising a scoring function which assigns higher scores to ID
samples than OOD samples in X.

4.2 SODA

We begin by describing the source-free, zero-shot version of SODA (ZS-SODA),
and then explain how source domain samples are incorporated to enhance per-
formance in our full SODA methodology.
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Fig. 4: An overview of SODA. Test samples are assigned initial scores based on
their similarity to the ID class text embeddings. If available, these scores are
multiplied by their source similarity, and refined via neighborhood propagation
within an ε-similarity radius. Target domain images are ScanObjectNN and
source domain images are ModelNet40.

Initial Scoring We use a fixed, pre-trained 3D VLM with text encoder gt and
point cloud encoder gpc. Following convention, we use a set of templates P, which
are shared between all classes, combined with each class label Ci to create a set
of class-specific text prompts Pi. An example template is “a point cloud model of
a CLS" where CLS is replaced with Ci, and the other templates can be found in
the supplementary material. These text prompts are encoded and l2-normalized,
and we take the mean of these embeddings as the text prototype of class Ci:

Pi =
1

|Pi|
∑
p∈Pi

gt(p), i ∈ 1, .., N. (1)

Similarly, we obtain the embedding of a query test sample xi via the fixed point
cloud encoder: zi = gpc(xi). With this, we assign the initial score of xi as the
maximum of its cosine similarities to the text prototypes:

stext(xi) = max
i=1,...,N

(sim(zi,Pi)) (2)

ID samples are assumed to have higher similarity to their correct class label,
resulting in a high score, compared with OOD samples. However, as we observed,
the alignment of point cloud embeddings with their text embeddings is degraded
by synthetic-to-real domain shift, which challenges this assumption. To address
this, we introduce a score refinement step through neighborhood-based score
propagation.

Score Propagation The misalignment of real point cloud embeddings with
the text embeddings means that the initial scores are prone to substantial un-
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certainty or noise. However, we also observed that nearby samples are likely to
belong to the same class. Based on this, we refine initial scores using the scores
of nearby samples. For example, an ID sample may have an erroneously low
score, but by adjusting its score in line with its neighbors, this uncertainty is
reduced, the score landscape is smoothened over the latent space, and the overall
robustness of OOD scores of individual samples is improved. We achieve this by
constructing a similarity graph, with a node for each test sample and an edge
connecting nodes i and j if their cosine similarity is greater than ε:

ei,j =

{
1, if sim(zi, zj) ≥ ε

0, otherwise
(3)

We set ε = percentile(S, 100(1 − η)), where S is the similarities between all
pair-wise test samples and η is a hyper-parameter. A smaller η results in a
higher ε threshold and a sparser similarity graph, i.e. fewer neighbors per sample
on average. This formulation is adaptive to the local density of each sample;
densely packed samples will have more neighbors within an ε-similarity radius
and therefore more neighbors in the similarity graph, compared to samples in
sparse regions. This adaptive strategy is important to limit the propagation
of information to only the most similar neighbors, rather than an inflexible k
nearest neighbor strategy. We set η = 0.02 in our main experiments and our
ablation study shows that performance is robust within a reasonable range of η.

We update the score of a sample xi as follows:

s(t)(xi) = αs(0)(xi) +
1− α

|Ni|
∑
j∈Ni

s(t−1)(xj), (4)

where t is the current iteration, s(0)(xi) = stext(xi) and Ni is the set of neighbors
to node i in the similarity graph. In other words, its updated score is a weighted
sum of its initial score and the mean of its neighbors’ current scores. Through
this procedure, the score of an individual sample is moved closer to those of
its neighbors, while anchored to its own initial score to avoid instability, which
smoothens the scoring function over the local neighborhood. We allow self-loops
in the graph so that every node has at least one neighbor (|Ni| > 0 ∀i). We
complete T iterations to obtain the final OOD scores. T is a hyper-parameter,
and we experiment with different T settings in the ablation study.

4.3 Source Similarity

We observed that real samples that are closer to the source domain in cosine
similarity are more likely to be correctly classified through text-based similarity
matching. Based on this observation, we hypothesise that these samples are
better aligned with the text labels, which means that their text-based OOD
scores are more reliable. As such, in our full SODA methodology, we use this
source similarity to re-weight the importance of different neighbors during score
propagation. More formally, given a set of ‘reference samples’ from ID classes in
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the source domain, Xref , we extract the embeddings of each reference sample
xref
i from the same fixed point cloud encoder: zrefi = gpc(x

ref
i ). For a test sample

xi, we take the mean of the cosine similarities of zi to its topk (k = 10) closest
reference sample embeddings to define its source similarity, denoted dsrc:

dsrc(xi) =
1

k

∑
j∈topk(zi)

(sim(zrefj , zi)) (5)

To further benefit from neighborhood propagation, we iteratively update dsrc
for each sample according to the same formula as Eq. 4, with s(0) = dsrc. With
this, the updated OOD score at the tth iteration is given by:

s(t)(xi) = d(t)src(xi) · s(t)text(xi). (6)

The effect of this is two-fold. Firstly, the OOD scores of samples with high dsrc
will increase. This is beneficial, as a test sample with greater closeness to source
domain ID samples intuitively suggests it is more likely to be ID itself, despite
the domain shift. Secondly, this score increase means that this sample has greater
influence, or weighting, when its score is propagated to its neighbors in the next
iteration, thereby increasing the scores of semantically similar samples in the
latent space. After several iterations, score information from reliable ID test
samples will flow to their more uncertain ID neighbors, and vice versa for OOD
samples, resulting in more robust OOD scores.

5 Experiments

We conduct experiments to study the effectiveness of our methodology in point
cloud OOD detection under domain shift. In practical settings, we would assign
all test samples with a score below a user-defined threshold as OOD. However,
the aim of this work is to improve the OOD scoring process, therefore we use
evaluation metrics that do not require the setting of a specific threshold. Namely,
AUC (higher is better) and FPR95 (lower is better), which is the false positive
rate at 95% recall. We also conduct an ablation study to analyze the behavior
of our methodology under different experimental settings.

5.1 Datasets

We follow the experimental framework of [1] in our main experiments, using the
most popular benchmark point cloud datasets. In particular, we use real samples
from ScanObjectNN [28] as our test data and ModelNet40 [33] as our reference
data. We split the object classes into the three subsets shown in Table 1. All
of the classes in SR1 and SR2 are also in ModelNet40, whereas SR3 classes are
not. As such, we conduct one experiment with SR1 as ID and SR2∪SR3 as OOD
classes, and another experiment with SR2 as ID and SR1∪SR3 as OOD classes.
The number of reference samples in each class ranges from 109 to 889, and the
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Table 2: AUC (higher is better) and FPR95 (lower is better) scores. Best/second
best scores are highlighted in bold/underlined. Baselines under ‘Customized
Model ’ are taken from [1] and all train a model using ID source domain data.
Baselines under ‘Pre-trained Model ’ use the pre-trained features from ULIP-2.

SR1 SR2 Average
AUC ↑ FPR95 ↓ AUC ↑ FPR95 ↓ AUC ↑ FPR95 ↓

Customized Model

MSP [11] 81.0 79.6 70.3 86.7 75.6 83.2
MLS [29] 82.1 76.6 67.6 86.8 74.8 81.7
ODIN [19] 81.7 77.3 70.2 84.4 76.0 80.8
Energy [20] 81.9 77.5 67.7 87.3 74.8 82.4
GradNorm [14] 77.6 80.1 68.4 86.3 73.0 83.2
ReAct [27] 81.7 75.6 67.6 87.2 74.6 81.4
NF [1] 78.0 84.4 74.7 84.2 76.4 84.3
OE+mixup [12] 71.2 89.7 60.3 93.5 65.7 91.6
ARPL+CS [4] 82.8 74.9 68.0 89.3 75.4 82.1
Cosine proto [7] 79.9 74.5 76.5 77.8 78.2 76.1
CE (L2) [1] 79.7 84.5 75.7 80.2 77.7 82.3
SubArcFace [5] 78.7 84.3 75.1 83.4 76.9 83.8

Pre-trained Model

MSP* [11] 83.0 84.2 74.6 81.4 78.8 82.8
MLS* [29] 81.0 79.4 83.2 62.7 82.1 71.0
Cosine Proto [7] 80.7 70.2 73.6 83.3 77.1 76.8
Mahalanobis [18] 73.8 89.7 65.3 83.3 69.5 86.5
OpenPatch [24] 85.8 54.4 71.6 74.1 78.7 64.3
ZS-SODA* (Ours) 85.9 67.1 87.1 50.4 86.5 58.7
SODA (Ours) 93.3 33.3 87.7 47.4 90.5 40.4
*source-free methods

details can be found in the supplementary material. Following [1], we randomly
sample 1024 points from reference point clouds and 2048 points from test point
clouds.

We also experiment with ModelNet-C [26], which contains corrupted versions
of ModelNet40 data, with multiple types of corruptions which are commonly
observed in real data, such as global and local noise and point dropout. In these
experiments, we use the clean ModelNet40 ID samples as reference samples and
the corrupted ModelNet-C samples as test samples. We use the strongest level of
corruption in our experiments, as this represents the greatest degree of domain
shift. We conduct two types of experiments, one with each of SR1 and SR2 from
Table 1 as the ID/OOD samples respectively.
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Table 3: AUC (higher is better) and FPR95 (lower is better) performance of
all pre-trained methods for ScanObjectNN test samples. ZS-SODA and SODA
without propagation are simply the initial scores. Avg. change shows the average
change after propagation over all methods.

S1 S2 Average
AUC ↑ FPR95 ↓ AUC ↑ FPR95 ↓ AUC ↑ FPR95 ↓

Without Propagation

MSP 83.0 84.2 74.7 81.4 78.8 82.8
Source Similarity 86.6 58.5 79.2 71.1 82.9 64.8
Cosine Proto 80.7 70.2 73.6 83.3 77.1 76.8
ZS-SODA 81.0 79.4 83.2 62.7 82.1 71.0
SODA 88.6 63.0 84.8 58.0 86.7 60.5

With Propagation

MSP 87.7 61.9 78.7 71.3 83.2 66.6
Source Similarity 90.1 43.2 84.5 55.2 87.3 49.2
Cosine Proto 82.5 56.8 74.2 76.2 78.3 66.5
ZS-SODA 85.9 67.1 87.1 50.4 86.5 58.7
SODA 93.3 33.3 87.7 47.4 90.5 40.4

Avg. change 4.0 -19.4 2.9 -10.0 3.5 -14.7

5.2 Baselines

Under ‘Customized Model ’, we adopt the methods presented in [1] as baselines.
All of these methods use models that have been trained on exclusively ID data
from the source domain. We present their PointNet++ results due to its superior
performance. Under, ‘Pre-trained Model ’, we adopt methods that use pre-trained
models. OpenPatch [24] and Mahalanobis [18], which measures the Mahanalobis
distance to the reference samples, use a single modality PointBERT backbone.
We also implement MSP, MLS and Cosine Proto, which measures the maximum
similarity to ID reference sample prototypes, using the same features extracted
from the 3D VLM ULIP-2 (PointBERT backbone) as ZS-SODA and SODA.
For hyper-parameters, we use T = 5, α = 0.2 and η = 0.02 by default without
tuning. The effect of hyper-parameter settings is shown in the ablation study.
We run our experiments in PyTorch on an Nvidia A5000 24G GPU.

5.3 Results

ScanObjectNN Table 2 shows the average AUC and FPR95 scores over three
random trials, for ID classes SR1 and SR2 separately, as well as their average.
The standard deviations are shown in the supplementary material. We see that
pre-trained methods mostly out-perform the customized model methods. This
can be explained by the difference in model architecture as well as the superior
representation learning that results from larger scale pre-training. We also see
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that our methodology significantly improves performance over all baselines. We
see that ZS-SODA and SODA achieve an average of 3.9 and 8.5 percentage points
improvement in AUC score over the next best-performing baseline, and a -13.4
and -31.4 point reduction in FPR95 respectively. SODA is also computationally
efficient; we show in the supplementary material that similarity graph construc-
tion and score propagation contribute only a tiny portion of the overall runtime
compared to the feature extraction phase. In the supplementary material, we also
conduct experiments using both reference and test samples from ShapeNet [3]
(i.e. all synthetic) and both reference and test samples from ScanObjectNN (i.e.
all real), and find a similar improvement from our methodology.

We also measure the impact of score propagation using the other OOD meth-
ods as the initial scores, namely MSP, Cosine Proto and the source similarity
dsrc itself. Table 3 shows that score propagation greatly improves performance,
with an average improvement of 3.5 points in AUC and -14.7 points in FPR95
across all methods, which demonstrates the positive effect of score propagation
on OOD detection. We also see that SODA consistently outperforms the other
methods, both with and without propagation, which demonstrates the comple-
mentary benefits of accounting for the similarity to the source domain alongside
text similarity in detecting domain-shifted OOD inputs.

Table 4: Performance of ZS-SODA and SODA (and change in performance from
inital scores before propagation) on corrupted ModelNet-C test samples.

ZS-SODA SODA
Corruption AUC ↑ FPR95 ↓ AUC ↑ FPR95 ↓

Add Global 89.7 (+2.7) 41.4 (-11.5) 97.1 (+1.5) 20.9 (-9.0)
Add Local 90.0 (+5.5) 52.4 (-11.8) 95.7 (+3.9) 23.3 (-26.9)
Dropout Global 76.9 (+3.9) 75.3 (-7.9) 88.4 (+5.7) 62.3 (-12.7)
Dropout Local 76.6 (+3.2) 74.9 (-6.6) 86.7 (+3.5) 58.9 (-11.8)
Jitter 48.6 (-0.6) 97.8 (+1.6) 60.5 (+1.5) 88.0 (-2.7)
Rotate 86.2 (+3.1) 55.5 (-6.8) 95.4 (+2.7) 35.9 (-8.4)
Scale 87.6 (+1.8) 35.4 (-13.2) 96.5 (+1.1) 23.5 (-0.4)

Average 79.4 (+2.8) 61.8 (-8.0) 88.6 (+2.8) 44.7 (-10.3)

ModelNet-C Table 4 shows the average performance with ModelNet-C test
samples. For brevity, we show the average results over both experimental setups
for ZS-SODA and SODA, followed by the change in these metrics from the initial
scores before score propagation (in parentheses). We see that our methodology
consistently improves performance in both metrics across corruption types, ex-
cept for ZS-SODA which declines slightly for the jitter corruption. On average,
we see a 2.8 point improvement in AUC for both ZS-SODA and SODA, and a
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−8.0/−10.3 improvement in FPR95 scores for ZS-SODA/SODA. The full results
are shown in the supplementary.

5.4 Ablation Study
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Fig. 5: Average AUC performance with different numbers of iterations, T (left),
settings of α (middle), and settings of η (right).

Hyper-parameters Figure 5 shows how performance varies with different set-
tings of hyper-parameters. Firstly, the leftmost figure shows AUC performance
after different numbers of propagation iterations. T = 0, gives the initial score,
from which we see a large increase in performance after just one iteration. Perfor-
mance slightly drops before converging at around T = 6 iterations, after which
the OOD scores are fully converged and there is no more change in performance.
In the middle figure, we see how performance changes as α in Eq. 4 varies.
α = 1 is equivalent to the initial scores, while a smaller α gives greater weight
to the current score information from neighbors in score updates. We see that
optimal performance is achieved around α ≈ 0.25, which signifies the impor-
tance of neighborhood information in refining the initial scores. The rightmost
figure shows performance for different settings of η. A larger η corresponds to
a lower ε threshold in Eq. 3, and consequently a denser similarity graph with
more connecting edges between samples. We see peak performance is achieved
at η ≈ 0.015, and slowly declines from there. As η increases, there are more
samples propagating score information to neighbors of lower cosine similarity,
which eventually hinders performance as the propagated information becomes
less relevant. In practice, the setting of these hyper-parameters are guided by the
number of available samples and also the sensitivity of individual applications
to the trade-off between false positive and negative errors.

Backbone models Table 5 shows the performance of SODA before and after
score propagation using different backbone 3D VLMs: ULIP-2, ULIP [34] and
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Table 5: AUC and FPR95 performance of SODA without propagation (the initial
score) and with propagation for different backbone feature extraction models.

Without Propagation With Propagation Avg. change

AUC ↑ FPR95 ↓ AUC ↑ FPR95 ↓ AUC ↑ FPR95 ↓

PointCLIPv2 63.7 91.4 65.3 86.5 1.6 -4.9
ULIP 78.5 76.7 82.4 64.4 3.9 -12.3
ULIP-2 86.7 60.5 90.5 40.4 3.8 -20.1

PointCLIPv2 [38]. We see that score propagation consistently improves both
AUC and FPR95 metrics across all backbone models. Furthermore, we see that
this improvement is most pronounced with ULIP-2, which also achieves the best
performance overall. This aligns with its superior performance in other down-
stream tasks demonstrated in the original work. We can expect a better model
to learn more meaningful latent representations, resulting in more semantically
meaningful neighbors which are beneficial for score propagation.

In the supplementary material, we perform several additional experiments.
Firstly, we test different formulations of text prompt templates and find that dif-
ferent prompts give better performance in different experimental setups. Overall,
using the average of the embeddings from multiple prompt templates is more
robust than any single template.

6 Conclusion

We investigate the effect of synthetic-to-real domain shift on the embeddings
learnt by pre-trained 3D vision-language models and find that the alignment of
real domain point clouds with their corresponding text labels is degraded com-
pared with synthetic data. This has significant implications for OOD detection
and other practical downstream tasks that concern real point cloud data. To
address this, we propose a novel methodology called SODA which updates and
refines the OOD scores assigned to test samples using score information prop-
agated from similar, nearby points within their local neighborhood. This has a
local smoothening effect on the scoring function which improves robustness and
significantly enhances detection performance. We achieve state-of-the-art perfor-
mance in both AUC and FPR95 metrics across different experimental settings.
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