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ABSTRACT

Curvilinear structure segmentation using deep neural net-
works is often limited by the high cost of annotation. Semi-
supervised learning (SSL) helps mitigate this dependency on
extensive annotated data. State-of-the-art SSL approaches
generate pseudo-labels for unlabeled data, which are then used
for further model training. These methods primarily focus on
calibrating thresholds to binarize the predictions. In this work,
we assume that when labeled and unlabeled data are similar,
the foreground-to-background ratio should be consistent be-
tween them. To leverage this assumption, we calibrate the
threshold by minimizing the distribution gap between labeled
ground truth and pseudo-labels on unlabeled data. Our pro-
posed threshold calibration can be integrated with existing
SSL methods. We evaluate its effectiveness on four datasets,
demonstrating that our method outperforms current state-of-
the-art SSL techniques, especially in scenarios with very low
labeled data.

Index Terms— Test-Time Adaptation, Missing Feature
Channel, Self-Training, Data Imputation

Segmenting curvilinear structures has wide applications
in areas such as defect identification and medical diagno-
sis. State-of-the-art approaches often employ deep learning
paradigms, which require large amounts of labeled data for
training. However, collecting labeled data can be expensive
and may require specialized expertise, such as in the case
of medical images. Semi-supervised learning (SSL) aims
to address the challenge of high annotation costs by lever-
aging inexpensive, unlabeled data. Prevailing SSL methods
often adopt a self-training paradigm, generating pseudo-labels
for unlabeled data and using these pseudo-labels to supervise
model updates [1] [2] [3]. Since incorrect pseudo-labels can
significantly harm the model’s generalization [4] [5], careful
calibration of pseudo-labels is crucial for the success of SSL.
Built upon the assumption that pseudo-label accuracy corre-
lates with model confidence (e.g., the highest probability of
the posterior), a fixed threshold is often employed to filter out
less confident unlabeled data [6]. More recent approaches
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Fig. 1. Overview of the proposed distribution alignment in-
formed thresholding for semi-supervised segmentation.

focus on dynamically adjusting both local and global thresh-
olds to account for the increasing model confidence during
training [7] [8].

Contrary to the SSL methods developed for classifica-
tion tasks, where class labels are often considered balanced,
curvilinear segmentation experiences a severe class imbal-
ance between foreground and background pixels. Directly
employing existing SSL methods [9] yields suboptimal per-
formance. Motivated by the common class imbalance in SSL,
recent attempts have proposed resampling the unlabeled sam-
ples to achieve a balanced labeled/pseudo-labeled set for train-
ing [10]. However, the resampling approach is less suitable for
segmentation tasks as repeating pixels is impractical. Instead
of resampling, class-imbalanced SSL via reweighting offers
more flexibility and has demonstrated success [11] [12] [13].
However, deriving class-specific weights can be unintuitive
and may introduce additional hyper-parameters for tuning.

In this work, we build on the assumption that the ratios
between foreground and background pixels are mostly con-
sistent between the labeled and unlabeled data. Under this
assumption, we propose refining the pseudo-label predictions
on the unlabeled data to minimize the foreground-background
distribution mismatch between labeled and unlabeled pseudo-
labels. Specifically, we introduce a KL-Divergence mea-
sure to quantify the distribution mismatch, and the optimal



threshold is derived by minimizing this KL-Divergence. We
demonstrate the effectiveness of the proposed dynamic thresh-
olding approach across multiple semi-supervised curvilinear
structure segmentation tasks, achieving state-of-the-art per-
formance. In summary, we propose an adaptive thresholding
method for effective semi-supervised curvilinear structure seg-
mentation, as illustrated in Fig. 1. The threshold is determined
by aligning the distributions between labeled and unlabeled
data. Extensive results on multiple curvilinear structure seg-
mentation tasks demonstrate the effectiveness of the proposed
method.

1. METHODOLOGY
1.1. Overview of Semi-Supervised Segmentation

We begin with an overview of the semi-supervised image seg-
mentation framework. We define the labeled training samples
as D𝑙 = {(𝑥𝑖 , 𝑦𝑖) | 𝑥𝑖 ∈ R𝐻×𝑊×3, 𝑦𝑖 ∈ {0, 1}𝐻×𝑊 }𝑖=1...𝑁𝑙

,
the unlabeled training samples as D𝑢 = {𝑥 𝑗 } 𝑗=1...𝑁𝑢

, and de-
note the segmentation model as 𝑓 (𝑥; 𝜃) ∈ [0, 1]𝐻×𝑊 . The
objective is to train the segmentation model on the combined
labeled and unlabeled data D𝑙 ∪D𝑢. We adopt a highly effec-
tive semi-supervised practice known as self-training [6]. This
approach involves two learning paths: for labeled data D𝑙 ,
we define a supervised segmentation loss L𝑙 (𝑥𝑖 , 𝑦𝑖), typically
instantiated as cross-entropy or dice loss [14]. For unlabeled
data D𝑢, we apply a geometric transformation 𝑔(·), followed
by a cutmix augmentation 𝑐(𝑥𝑖 , 𝑥 𝑗 ) [15]. Cutmix randomly
crops a patch from image 𝑥 𝑗 and pastes it onto 𝑥𝑖 . This aug-
mentation can be applied to both input raw images and seg-
mentation masks. We maintain two networks: a teacher net-
work 𝜃, which is an exponential moving average of the student
network parameters 𝜃. We introduce a threshold 𝜏 to binarize
the teacher model’s predictions �̂�𝑖 which are used to supervise
the student network as L𝑢 = 1

|D𝑢 |
∑

𝑥𝑖∈D𝑢
L𝑙 (𝑥𝑖 ,1( �̂�𝑖 ≥ 𝜏)).

The threshold 𝜏 is typically treated as a hyper-parameter and
may require additional labeled data for rigorous tuning.

1.2. Distribution Alignment for Thresholding

Determining the optimal threshold without referring to a sep-
arate validation set is non-trivial. In this work, we assume that
the label distribution between labeled and unlabeled data is
roughly identical, which provides a principled way to estimate
the threshold. This identical distribution assumption leads us
to explore the optimal threshold as the one that minimizes
the discrepancy between the prior distribution on labeled data
and the pseudo-labels on the unlabeled data. We denote the
labeled prior distribution 𝑄 and pseudo-label distribution 𝑃
subject to threshold 𝜏 in Eq. 1.

𝑄 = [
∑

𝑖ℎ𝑤 1(𝑦𝑖ℎ𝑤 = 0)
𝐶

,

∑
𝑖ℎ𝑤 1(𝑦𝑖ℎ𝑤 = 1)

𝐶
],

𝑠.𝑡. 𝐶 =
∑︁

1(𝑦𝑖ℎ𝑤 = 0) +
∑︁

1(𝑦𝑖ℎ𝑤 = 1)
(1)

𝑃 = [
∑

𝑖ℎ𝑤 1( �̂�𝑖ℎ𝑤 < 𝜏)
�̂�

,

∑
𝑖ℎ𝑤 1( �̂�𝑖ℎ𝑤 ≥ 𝜏)

�̂�
],

𝑠.𝑡. �̂� =
∑︁

1( �̂�𝑖ℎ𝑤 < 𝜏) +
∑︁

1(𝑦𝑖ℎ𝑤 ≥ 𝜏)
(2)

The optimal threshold 𝜏∗ is thus obtained by minimizing
the KL-Divergence between 𝑃 and 𝑄 as follows.

𝜏∗ = arg min
𝜏∈[0,1]

𝐾𝐿 (𝑄 | |𝑃(𝜏)) (3)

The KL-Divergence in Eq. 3 does not have a gradient
w.r.t. 𝜏, prohibiting us from optimizing 𝜏 in a gradient based
method. However, since 𝑄 is fixed and 𝑃 can be efficiently
calculated given a 𝜏, we choose to discretize the search space
of 𝜏 and implement an exhaustive search for 𝜏with a increment
of 0.05.

1.3. Incremental Distribution Estimation
The labeled prior distribution 𝑄 can be easily estimated from
the labeled dataset D𝑙 in an offline manner. The pseudo label
distribution 𝑃 depends on the teacher model’s predictions and
is subject to weight updates. A naive approach to estimate 𝑃
would involve running forward passes for all unlabeled data
before each training iteration. However, this would introduce
extremely high computational overhead for each update step.
Therefore, we adopt an incremental distribution estimation
following the update rule below, where B refers to the current
minibatch.

𝑃(𝜏) =


𝛽𝑃0 (𝜏∗) + (1 − 𝛽)

∑
𝑥𝑖∈B

∑
ℎ𝑤 1( �̂�𝑖ℎ𝑤 < 𝜏)
�̂�

,

𝛽𝑃1 (𝜏∗) + (1 − 𝛽)
∑

𝑥𝑖∈B
∑

ℎ𝑤 1( �̂�𝑖ℎ𝑤 ≥ 𝜏)
�̂�

 (4)

1.4. Final Training Procedure

The final training procedure follows a two-step alternative
update between the thresholding hyper-parameter and semi-
supervised learning. In the first step, we estimate the optimal
threshold 𝜏∗ by Eq. 3. We then update model weights by
gradient descent with the combined labelled and unlabeled
losses as follows.

L𝑠𝑠𝑙 =
1

|D𝑙 |
∑

𝑥𝑖 ,𝑦𝑖∈D𝑙

L𝑙 (𝑥𝑖 , 𝑦𝑖) + 𝜆
|D𝑢 |

∑
𝑥 𝑗 ∈D𝑢

L𝑙 (𝑥 𝑗 ,1( �̂� 𝑗 ≥ 𝜏∗)) (5)

2. EXPERIMENTS

2.1. Datasets and Experimental Setup
Datasets: CrackForest [16] consists of 118 annotated images
of road cracks. EM128 [17] is designed for cell membrane
segmentation, containing 30 labeled images divided into 16
regions of 128 × 128 pixels. DRIVE128 [18] originates from
a diabetic retinopathy screening program, featuring images at
584 × 565 pixels divided into 16 regions of 128 × 128 pixels.
STARE128 [19] is a fundus image database for retinal blood
vessel segmentation, including 20 images with resolutions of
605 × 700 pixels, each divided into 25 non-overlapping regions
of 128 × 128 pixels. The dataset is split into 393/92 images
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Fig. 2. Illustration of binarizing pseudo predictions �̂�𝑖 with
different thresholds 𝜏1, · · · 𝜏𝑛.
for training and testing, resulting in STARE128. For semi-
supervised segmentation evaluation, we adopt the data split
proposed in [9].
Hyperparameters: Both fully supervised and semi-supervised
training use the Adam optimizer with a learning rate of 0.001
and an EMA hyperparameter of 0.999 for teacher model up-
date. We apply a batch size of 32 and 100 training epochs. For
incremental distribution estimation, we adopt 𝛽 = 0.9. The
consistency loss weight is chosen as 𝜆 = 𝑒𝑥𝑝(−10(1 − 𝑒

100 )
2)

where 𝑒 refers to current training epoch.
Evaluation Metric: We employ a threshold of 0.5 to binarize
the predictions. Subsequently, we calculate the Intersection
over Union (IoU) and Dice coefficient by comparing these
binarized predictions with the ground-truth. Both metrics
formulate segmentation as a binary classification task, with
background pixels set to 0 and foreground pixels set to 1. We
report the performance as the mean and standard deviation
over 5 random runs.
2.2. Competing Methods
Fully Supervised Methods: FCN [20] utilizes fully convo-
lutional layers for segmentation model. SegNet [21], inspired
by autoencoders, achieves accurate pixel-level segmentation
using deep convolutional encoders and decoders. U-Net [22]
introduces a symmetrical U-shaped structure with skip con-
nections to retain global context and local detail information.
ResU-Net [23] integrates residual blocks from ResNet into
U-Net. BCDU-Net [24] is a UNet variant with a 3-level
encoder-decoder structure that utilizes batch normalization
without densely connected convolutions.
Semi-Supervised Methods: MeanTeacher [25] incorporates
a teacher network that provides smooth supervision signals
through exponential moving average (EMA) of student net-

work parameters. VAT [26] introduces virtual adversarial
perturbations to enhance robustness by maximizing instabil-
ity near input data. CPS [27] enforces consistency between
two segmentation networks with different initializations, us-
ing one-hot labels as supervision signals for each other.
CutMix [28] implements data augmentation by cutting and
pasting regions of input images, maintaining consistency
between teacher and student predictions. SemiDial (Ours)
proposed method incorporating distribution alignment for
semi-supervised segmentation. All semi-supervised methods
use BCDU-Net as the backbone.

2.3. Results Analysis

Quantitative Results: We present quantitative comparisons
across the five datasets in Tab. 1. From the results, several ob-
servations can be made. Firstly, SemiDial consistently outper-
forms existing semi-supervised segmentation methods at both
1% and 5% labeling budgets. Specifically, the performance
gap between SemiDial and the second best method (CutMix)
is more pronounced at the 1% labeling budget, highlighting
the importance of selecting reliable thresholds for stable SSL
performance at extremely low labeling budgets. Furthermore,
SemiDial’s performance at the 5% labeling budget approaches
the upper bound achieved by fully supervised methods, sug-
gesting that SSL offers a promising approach to balancing
segmentation performance and labeling efforts.
Qualitative Results: The qualitative experimental results are
shown in Fig. 3. As depicted, with 5% labeled data, SemiDial
demonstrates cleaner overall prediction results. In more detail,
the method accurately identifies more fine cracks and blood
vessels without misclassifying them as background. How-
ever, like other methods, SemiDial still exhibits limitations
in predicting these features consistently across samples. This
analysis suggests that the challenge lies in the low contrast
between these features and the background, posing difficulty
for the model in accurate identification.

2.4. Ablation Study
We investigate the effectiveness of semi-supervised learning
(SSL), data augmentation (Data Aug), and distribution align-
ment (Dist Align) on two datasets at a 1% labeling budget.
The ablation study results are presented in Tab. 2. We make
the following observations from the results. Firstly, applying
the original CutMix model significantly improves upon the
fully supervised baseline, demonstrating the effectiveness of
consistency-based semi-supervised learning in leveraging un-
labeled data to enhance segmentation performance. Secondly,
employing strong geometric transformations further enhances
segmentation performance. Additionally, when distribution
alignment is used to estimate the optimal threshold 𝜏∗, we
explore two approaches. Initially, employing the mean square
error (MSE) loss for threshold estimation shows improved
results over using a fixed threshold of 0.5. However, utiliz-
ing KL-Divergence yields superior performance compared to
MSE loss for threshold estimation.



Table 1. Evaluation of competing methods for semi-supervised segmentation on curvilinear structure datasets. We report IoU
and Dice coefficient as evaluation metrics. All numbers are in %.

CrackForest EM128 DRIVE128 STARE128
IoU Dice IoU Dice IoU Dice IoU Dice

Fu
lly

Su
pe

rv
is

ed Labeled Pct. 100% 100% 100% 100%
FCN [20] 60.50 ± 0.59 75.39 ± 0.46 60.90 ± 0.46 75.70 ± 0.36 42.83 ± 0.17 59.97 ± 0.17 46.46 ± 0.32 63.44 ± 0.30
SegNet [21] 66.26 ± 1.87 79.70 ± 1.36 57.64 ± 0.52 73.13 ± 0.42 47.33 ± 1.24 64.24 ± 1.14 44.57 ± 4.28 61.58 ± 4.14
UNet [22] 68.09 ± 0.68 81.01 ± 0.48 66.34 ± 0.17 79.76 ± 0.13 59.87 ± 0.21 74.90 ± 0.16 62.42 ± 0.83 76.87 ± 0.63
ResU-Net [23] 67.08 ± 0.12 80.30 ± 0.09 67.48 ± 0.07 80.58 ± 0.05 58.76 ± 0.17 74.02 ± 0.13 60.34 ± 0.62 75.26 ± 0.49
BCDU-Net [24] 70.43 ± 0.25 82.65 ± 0.17 67.51 ± 0.01 80.60 ± 0.01 61.57 ± 0.04 76.21 ± 0.03 64.16 ± 0.03 78.17 ± 0.03

Se
m

i-S
up

er
vi

se
d

Labeled Pct. 5% 5% 5% 5%
MT [25] 64.37 ± 0.77 78.33 ± 0.57 63.92 ± 0.09 77.99 ± 0.06 51.50 ± 0.10 67.99 ± 0.09 57.58 ± 0.08 73.08 ± 0.06
VAT [26] 56.34 ± 0.43 72.07 ± 0.35 54.89 ± 0.75 70.87 ± 0.63 37.71 ± 0.24 54.77 ± 0.25 40.45 ± 0.54 57.60 ± 0.55
CPS [27] 59.77 ± 0.01 74.82 ± 0.01 62.44 ± 0.15 76.88 ± 0.11 50.71 ± 0.01 67.29 ± 0.01 47.04 ± 0.07 63.98 ± 0.06
CutMix [28] 66.51 ± 0.08 79.89 ± 0.06 65.09 ± 0.02 78.85 ± 0.01 53.12 ± 0.03 69.39 ± 0.03 59.15 ± 0.76 74.33 ± 0.59
SemiDial (Ours) 66.81 ± 0.11 80.10 ± 0.08 65.13 ± 0.03 78.89 ± 0.03 54.20 ± 0.23 70.30 ± 0.19 59.71 ± 0.41 74.77 ± 0.33
Labeled Pct. 1% 1% 1% 1%
MT [25] 46.27 ± 0.39 63.27 ± 0.36 54.11 ± 0.17 70.22 ± 0.15 40.70 ± 0.98 57.85 ± 0.99 33.26 ± 0.23 49.92 ± 0.26
VAT [26] 41.95 ± 1.20 59.10 ± 1.20 47.76 ± 0.01 64.65 ± 0.01 32.08 ± 0.51 48.58 ± 0.58 26.58 ± 0.15 42.00 ± 0.19
CPS [27] 47.99 ± 0.01 64.85 ± 0.01 55.41 ± 0.09 71.31 ± 0.07 41.89 ± 0.08 59.05 ± 0.08 32.12 ± 0.08 48.62 ± 0.09
CutMix [28] 61.66 ± 0.18 76.28 ± 0.14 56.81 ± 0.12 72.46 ± 0.10 46.34 ± 1.74 63.33 ± 1.63 36.46 ± 0.40 53.44 ± 0.43
SemiDial (Ours) 62.69 ± 0.15 77.06 ± 0.11 57.95 ± 0.15 73.38 ± 0.12 50.36 ± 0.47 66.98 ± 0.41 40.49 ± 0.41 57.64 ± 0.42
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Fig. 3. Qualitative results comparing different methods on selected samples. The number on the top left indicate the image
index within each dataset.

Table 2. Ablation study on DRIVE128 and STARE128
datasets with 1% labeling budget.

SSL DistAlign DataAug DRIVE128 STARE128
- - - 33.31 ± 0.14 29.80 ± 0.48

CutMix - - 43.46 ± 0.73 33.81 ± 2.70
CutMix - GeoTForm 46.34 ± 1.74 36.46 ± 0.40
CutMix MSE GeoTForm 48.62 ± 1.45 37.36 ± 0.78
CutMix KLD GeoTForm 50.36 ± 0.47 40.49 ± 0.41

3. CONCLUSION
In this paper, we propose a novel semi-supervised method
for the semantic segmentation of curvilinear structures. Our
method mitigates biased and collapsed predictions caused by
data imbalance through the distribution alignment strategy.
Experimental results across various datasets demonstrate that
our approach predicts more detailed features within curvi-
linear structures and maintains robust performance even with
minimal labeled data. Additionally, the distribution alignment
strategy is versatile and can be easily integrated into existing
semi-supervised image segmentation framework.
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