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SDCoT++: Improved Static-Dynamic Co-Teaching
for Class-Incremental 3D Object Detection

Na Zhao Peisheng Qian Fang Wu Xun Xu Xulei Yang Gim Hee Lee†

Abstract—Deep learning approaches have demonstrated high
effectiveness in 3D object detection tasks. However, they often
suffer from a notable drop in performance on the previously
trained classes when learning new classes incrementally without
revisiting the old data. This is the “catastrophic forgetting”
phenomenon which impedes 3D object detection in real-world
scenarios, where intelligent machines must continuously learn
to detect previously unseen categories. Furthermore, frequent
co-occurrences of old and new classes in scenes exacerbate
catastrophic forgetting and cause model confusion. To address
these challenges, we propose a novel static-dynamic co-teaching
approach. Our framework involves a student model and two
teacher models: a static teacher with fixed weights which imparts
preserved old knowledge to the student, and a dynamic teacher
with continuously updated weights which transfers underlying
knowledge from new data to the student. To mitigate the issue of
co-occurrence, we generate pseudo labels for base (i.e. old) classes
from both static and dynamic sources during incremental learning.
Additionally, to mitigate the negative impact of varying occurrence
frequencies of classes on fixed thresholding during the selection
of pseudo labels, we calibrate the probabilities of base classes
to attain more balanced class probabilities. Moreover, our static-
dynamic co-teaching framework is backbone-agnostic, making it
compatible with different detection architectures. We demonstrate
its backbone-agnostic nature by adapting three representative 3D
object detectors: VoteNet, 3DETR and CAGroup3D. Extensive
experiments showcase the superior performance of our proposed
method compared to baseline approaches across indoor and
outdoor benchmark datasets and applicability with different
backbone models.

Index Terms—Class incremental learning, object detection, 3D
point clouds.

I. INTRODUCTION

Deep learning has reached significant achievements in
various computer vision tasks, notably in 3D point cloud-based
object detection. Numerous deep learning-based approaches [1]–
[10] have demonstrated remarkable effectiveness in localizing
and classifying objects in the point cloud of a scene. These
approaches typically follow a static learning process, where
labeled data for all classes are available in a single training
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Fig. 1: An illustration of class-incremental 3D object detection.

session. However, such static process is impractical for real-
world applications in our dynamic physical world. Continuously
emerging new concepts and data make it challenging to
retrain models with both new and old data due to constraints
such as computation costs, privacy concerns, and storage
issues associated with old data. Consequently, it is imperative
to develop the competency of incrementally learning new
knowledge over time while retaining existing knowledge.

For example, as illustrated in Figure 1, a domestic robot is
initially taught to recognize only several base classes such as
‘chair’, ‘picture’, etc. Subsequently, the robot is expected to
detect novel classes of objects ‘sofa’, ‘table’ and other new
items added to the home when the training data of the novel
classes are given incrementally. A naive retraining of the robot’s
detection model on this ever-growing dataset that includes
previously learned classes incurs increasing computational
complexity. Moreover, it may not always be possible to access
the training data for previously seen classes due to storage
limitation, or privacy and licensing restrictions. A direct training
of the robot’s detection model with training data of only the
new classes inevitably leads to drastic drop in performance
on the previously seen classes. Consequently, the robot must
incrementally learn to recognize new classes of objects while
preserving its detection capability on old classes without the
need to access previously seen training data. This requirement
of class-incremental learning for 3D object detection gives
intelligent machines such as the domestic robot a “close-to-
human brain” ability to retain previously acquired knowledge
while assimilating new information.

While class-incremental learning has been explored in
various computer vision tasks, such as image classification [11]–
[16] and object detection [17]–[22], it still remains relatively
under-explored for the task of 3D object detection. We thus
investigate class-incremental 3D object detection in this paper.
Particularly, we tackle a challenging scenario where old data
is not available during incremental learning, potentially due to
storage limitations or privacy concerns. The primary challenge
in class-incremental learning is known as “catastrophic for-
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getting”, which refers to a significant performance decline
on old classes when new classes are added incrementally.
This phenomenon poses a substantial challenge in class-
incremental 3D object detection, particularly when old data is
unavailable during incremental learning. Moreover, the frequent
co-occurrences of both old and new classes in 3D detection
datasets exacerbate the forgetting problem. This is because the
inclusion of old, unlabeled classes and new, labeled classes
in the new training samples can inadvertently suppress the
detection of old classes while biasing towards the new classes,
as illustrated in Rows 3 and 12 of Table I and II.

Potential solutions to address the forgetting issue in the
complete absence of old data are to leverage the existing model
trained on the old data to perform knowledge distillation or
to create pseudo annotations for previously learned classes in
the new training instances. However, the inherent occlusion
and incompleteness of objects (e.g. the table and chairs in
the left of Figure 2) coupled with highly imbalanced class-
wise occurrence frequencies in point cloud data representation
pose significant obstacles for both knowledge distillation and
pseudo label generation. Specifically, the previous model may
not provide sufficient knowledge to distill for some classes.
Moreover, the pseudo labels generated in a naive manner from
the frozen previous model using fixed thresholding can be
inaccurate and incomplete, ultimately degrading the detection
performance.

In view of these limitations, we propose the novel SDCoT++:
Static-Dynamic Co-Teaching framework for class-incremental
3D object detection. In this framework, the incremental model
is represented as a student, which is taught by two teachers:
a static teacher which is a frozen copy of the previous model
trained on old data, and a dynamic teacher which is an ensemble
of the student model across its up-to-date training steps. Both
teachers provide pseudo labels for the old classes to the
student, balancing the potentially limited capacity of the static
teacher for certain classes with the adaptive capabilities of the
dynamic teacher. To alleviate the adverse effects of varying
class occurrence frequencies on fixed thresholding during
pseudo label selection, we opt for calibrating the probabilities of
base classes according to their occurrence frequency, achieving
more balanced class probabilities. This design allows us to use a
single threshold for the balanced class probabilities, minimizing
the number of required hyperparameters. Aside from providing
explicit supervisions using pseudo labels, the static teacher
offers distillation of knowledge from old data via a distillation
loss, while the dynamic teacher transfers underlying knowledge
from the new data to the student via a consistency loss. Notably,
since the student and two teachers are 3D object detectors
with identical architecture, our SDCoT++ framework can be
seamlessly applied to any existing 3D object detection model
with minimal implementation effort. To illustrate the invariance
of our model to the backbone object detector, we showcase
its effectiveness with three representative 3D object detection
methods: VoteNet [1], 3DETR [2] and CAGroup3D [23].

Overall, our SDCoT++ achieves static-dynamic co-teaching
by training the student model with supervision from the “mixed
labels” (i.e. pseudo labels for base classes and ground-truth
labels for novel classes) and regularization from the two
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Fig. 2: Illustrations of pseudo annotations generated from SUN RGB-
D (left) and ScanNet (right). Red bounding boxes represent pseudo
labels w.r.t 𝐶𝑏𝑎𝑠𝑒. Green and Blue bounding boxes are ground
truth labels w.r.t 𝐶𝑏𝑎𝑠𝑒 and 𝐶𝑛𝑜𝑣𝑒𝑙 , respectively.

adversarial teachers. Our SDCoT++ demonstrates significant
performance improvements over the baselines on extensive
experiments conducted under both batch- and sequential-
incremental learning settings with two indoor benchmark
datasets: SUN RGB-D [24] and ScanNet [25]. Additionally, we
conduct preliminary experiments on the outdoor KITTI [26]
dataset to verify the applicability of our method in outdoor
driving scenarios, further showcasing its versatility across
different environments. Our contribution can be summarized
as follows:

• We pioneer the exploration of the under-explored yet
practical class-incremental 3D object detection task and
propose a novel static-dynamic co-teaching-based method
named SDCoT++.

• Our proposed SDCoT++ approach achieves static-dynamic
co-teaching mechanism by (explicit) pseudo supervisions
and (implicit) knowledge regularization from the two
adversarial teachers.

• Our proposed SDCoT++ is backbone-agnostic, allowing
for easy adaptation to any off-the-shelf 3D object detector
to solve class-incremental learning problems.

• We conduct extensive experiments on two benchmark
indoor datasets to demonstrate the effectiveness of our
SDCoT++ approach in a variety of incremental learning
scenarios. Additionally, we made an initial attempt to
verify the effectiveness of our method in outdoor scenarios.

This work is an extension of our conference paper [27],
presenting new contributions in three key aspects: 1) Unlike
[27], which solely relies on the static teacher for pseudo-label
generation, we enhance pseudo-label quality by a) integrating
predictions from the dynamic teacher, and b) adjusting class
probabilities based on object occurrences. This improvement
in pseudo labels consistently enhances performance by anno-
tating more base class objects missed by the static teacher.
2) We empirically validate the backbone-agnostic nature of
our framework by employing VoteNet [1], 3DETR [2] and
CAGroup3D [23] as object detectors, substantiating its efficacy
through extensive experiments across two datasets under
varying class-incremental learning scenarios. 3) We conduct
a thorough analysis on the contribution of each component
within SDCoT++, and demonstrate its effectiveness in both
indoor and outdoor scenarios.
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II. RELATED WORK

A. 3D Object Detection

3D object detection methods can be categorized into three
types based on the input scene representation: 1) Monocular
image [28]–[32]; 2) RGB-D image [33]–[37]; 3) 3D point
cloud [1], [2], [23], [38], [39]. In this paper, we focus on
point cloud-based 3D object detection in indoor scenarios.
Due to the irregular and sparse characteristics of 3D point
clouds, it is challenging to localize 3D objects in an efficient
way like its image-based counterparts. Moreover, 3D indoor
scenarios pose greater detection challenges compared to outdoor
environments due to their greater diversity and cluttered scenes
with object overlapping. Several prior works [1], [38], [39]
have addressed this challenge by exploring the sparsity of
3D data and generating 3D proposals around a set of seed
points identified through voting. Among these voting based
approaches, VoteNet [1] stands out as a representative with
its simple yet efficient design. It employs PointNet++ [40] for
point-wise feature extraction, and employs deep Hough voting
and vote aggregation for object proposals. Unlike VoteNet,
which primarily relies on single-scale feature aggregation,
MLCVNet [38] enhances the voting mechanism by integrating
features at multiple point patch levels and capturing a broader
range of contextual details. H3DNet [39] expands intermediate
features with geometric primitives including centers, edge
centers and face centers of bounding boxes before voting object
centers and generating 3D object proposals. Different from
the geometric proximity based point clustering in VoteNet,
CAGroup3D [23] generates proposals via class-aware point
grouping, where it generates voxel-wise predictions as contex-
tual cues that guide the grouping process. Recently, TR3D [41]
explores real-time 3D object detection in indoor environments,
highlighting the need for efficient processing in cluttered scenes.
SPGroup3D [42] introduces a superpoint grouping network
for indoor 3D object detection, focusing on enhancing the
representation of geometric details in complex scenes.

Recently, inspired by the achievements of DETR [43] in
2D object detection, researchers have ventured into extending
similar architectures to the 3D domain [2], [4]. These adap-
tations typically feature a query-based Transformer structure.
However, unlike the learnable queries employed in DETR,
the 3D counterparts typically utilize data-dependent priors to
initialize queries, thereby reducing the search space in 3D data.
For example, Groupfree [4] introduces KPS sampling to obtain
initial object queries, followed by a Transformer decoder mod-
ule to achieve final 3D object detection. 3DETR [2] replaces the
PointNet++ backbone in Groupfree with a Transformer encoder,
resulting in an end-to-end transformer-based solution for 3D
object detection. Similar to Groupfree, it adopts non-parametric
object queries, which are sampled from input point cloud using
Farthest Point Sampling (FPS) [40]. Uni3DETR [44] presents a
unified 3D object detector for both indoor and outdoor scenes,
incorporating a mixture of parametric (i.e. learnable) and non-
parametric query points. V-DETR [6] further improves the
locality in the cross-attention mechanism by encoding relative
positions of points to the predicted 3D boxes.

In this paper, we select three representative 3D object
detection models: the voting based VoteNet, the DETR-
based 3DETR, and the recent CAGroup3D as our detection
backbones for class incremental learning. We identify several
issues with the original VoteNet, 3DETR, and CAGroup3D
when adapting to the class incremental learning setting, and
demonstrate that these issues can be easily resolved with
minimal implementation effort, as discussed in Section III-C.

B. Class-incremental Learning

Class-incremental learning is a well-established challenge in
machine learning, characterized by the continuous integration
of novel classes into a model [45]. Recent surge of popularity
in deep learning techniques increases the importance of class-
incremental learning as deep learning methods usually have
the impractical requirement of large amounts of labeled data
for all the classes/tasks for batch training. The majority of
current class-incremental learning approaches are concentrated
on the task of image classification, and can be categorized into
three main types: 1) Regularization-based methods [11], [16],
[46]–[49] that aim to minimize the discrepancy between either
the data [11], [48] or parameters [16], [46], [47], [49] in the
preceding and the current model; 2) Rehearsal/replay-based
methods [12], [13], [50]–[53] that store a subset of examples
from previous tasks [12], [13], [50], [51], [54], [55] or produces
samples for previous tasks from a generative model [52], [53]
to prevent forgetting of previous tasks; 3) Network expansion
methods that dynamically adjust the network to accommodate
the evolving data stream by adding neurons [56], duplicating
backbones [57], [58], and expanding tokens and prompts
in the Vision Transformer [14], [59]–[61]. In the scenario
of 3D object detection, the replay-based methods are not a
good choice because of the larger memory budget of 3D
data and the difficulty of learning 3D generative models.
Network expansion is a promising direction for 2D data but
lacks crucial prerequisites including the foundation model
for point clouds. In contrast, regularization-based methods
are more practical as they do not need to store any old
data. We therefore take inspiration from regularization-based
method when designing our solution for class-incremental 3D
object detection. Parameter-based regularization aims to restrain
weight drift of important parameters in the previous model
when fine-tuning on new data sets. These methods need to
additionally estimate the importance of each parameter in the
previous model. However, determining the importance of the
parameters is not trivial. Data-based regularization aims to
restrain activation drift of outputs from the previous model via
knowledge distillation [62], which usually describes a strategy
that transfers knowledge from a large network to a small
network for efficient deployment. In this paper, we leverage
on the concept of knowledge distillation to transfer knowledge
from the previous 3D object detector to the current detector.

C. Class-incremental Object Detection

In recent studies, several works [17]–[22], [63]–[65] apply
incremental learning on the task of image-based object de-
tection. Among them, exemplar replay (retraining a subset of
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Fig. 3: An illustration of the proposed SDCoT++ architecture. Both student and two teacher models are 3D object detectors. The static and
dynamic teachers generate pseudo labels for base classes, which are mixed with ground-truth novel class labels to supervise the student
model. At the same time, the static teacher also distills base class knowledge to the student via L𝑑𝑖𝑠 and the dynamic teacher regularizes the
student via L𝑐𝑜𝑛.

examples from previous tasks) and knowledge distillation on
network responses (e.g. outputs of the classifiers or features of
intermediate layers) are the two most investigated approaches.
Wang et al. [21] leverage memory replay with data compression
(MRDC) for incremental object detection, and propose determi-
nantal point processes (DPPs) to balance the quality-quantity
trade-off in the memory buffer. Shmelkov et al. [17] pioneer the
study of incremental image object detection. They employ Fast-
RCNN [66] as the object detector and implement distillation
losses on the both classification and proposal regression outputs
for overcoming the catastrophic forgetting. However, this
method is not very efficient as it requests an offline object
proposal step that is computationally expensive. Feng et al. [20]
improve knowledge distillation by selecting classification and
regression outputs with different thresholds derived through
Elastic Response Selection (ERS). Several works have explored
the joint effect of exemplar replay and knowledge distillation
for incremental object detection. Liu et al. [18] adapt Elastic
Weight Consolidation (EWC) [46], which regularizes network
parameters during incremental learning, to 2D object detection.
They achieve the adaptation by introducing two modifications:
1) using pseudo annotations of bounding boxes for old classes
in new training samples; 2) replacing quadratic regularization
with Huber regularization in the regularized loss of EWC.
More recently, CL-DETR [64] designs detector knowledge
distillation (DKD) for Transformer-based incremental object
detection and distribution-preserving calibration that matches
classes in the exemplar set to the training distribution. Similar
to [18], [64], pseudo labels of previous categories are also
employed by us to deter the new model from incorrectly
identifying objects of old classes as background in new samples.
However, techniques specifically engineered for 2D images
and 2D object detection backbones cannot be trivially adapted
to the point cloud-based 3D object detection task. In contrast
to the image-based context, the pseudo annotations generated
in the 3D setting lack precision, which can lead to a decline in
performance. To address this challenge, we introduce a novel
static-dynamic co-teaching technique to alleviate deficiencies
of pseudo labels as described in Section III.

III. METHODOLOGY

A. Problem Definition

We split all classes into two disjoint sets, i.e. base classes
set 𝐶𝑏𝑎𝑠𝑒 and novel classes set 𝐶𝑛𝑜𝑣𝑒𝑙 for class-incremental
3D object detection. 𝐷𝑏𝑎𝑠𝑒 denotes the set of scenes for 𝐶𝑏𝑎𝑠𝑒,
and 𝐷𝑛𝑜𝑣𝑒𝑙 represents the set of scenes for 𝐶𝑛𝑜𝑣𝑒𝑙 . The class-
incremental 3D object detection problem is formulated as:
with a 3D object detector Φ𝐵 (the base model) pre-trained on
𝐷𝑏𝑎𝑠𝑒, we aim to acquire an incremental 3D object detector
Φ𝐵∪𝑁 (the incremental model) using only 𝐷𝑛𝑜𝑣𝑒𝑙 , which is
capable of detecting objects of all classes seen so far, i.e.
𝐶𝑏𝑎𝑠𝑒 ∪ 𝐶𝑛𝑜𝑣𝑒𝑙 .

The key challenge in class-incremental 3D object detection
is the high possibility of co-occurrence of both unlabeled
base classes 𝐶𝑏𝑎𝑠𝑒 and labeled novel classes 𝐶𝑛𝑜𝑣𝑒𝑙 in some
scenes. As a result, these regions that contain 𝐶𝑏𝑎𝑠𝑒 appear as
background and are incorrectly suppressed when training the
incremental model Φ𝐵∪𝑁 , which hasten forgetting. Moreover,
the presence of unannotated 𝐶𝑏𝑎𝑠𝑒 is confusing to Φ𝐵∪𝑁 .

A straightforward solution for missing 𝐶𝑏𝑎𝑠𝑒 labels is to
produce pseudo labels for 𝐶𝑏𝑎𝑠𝑒 from predictions of a frozen
pre-trained model Φ𝐵 via a fixed threshold. While pseudo-
labeling works in 2D domain based applications such as class-
incremental 2d object detection [18], [64], this naive approach
is less effective in our case for the following reasons. Firstly,
compared to 2D images, occlusion and incompleteness of
objects are more severe in 3D point clouds, leading to less
accurate predictions. Secondly, the benchmark datasets for 3d
object detection suffer from more pronounced class imbalance
and co-occurence issues compared to their 2D counterparts,
leading to biased predictions across different classes. The
application of a uniform threshold to filter pseudo annotations
across all classes is thus empirically sub-optimal for each
individual class [67], [68]. As a result, this naive pseudo-
labeling method would produce incomplete (missing objects)
and inaccurate (wrong classification) pseudo labels.

We therefore propose static-dynamic co-teaching to circum-
vent the limitations of basic pseudo-labeling, which we will
elaborate in the following sections.
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B. Static-Dynamic Co-Teaching

Figure 3 illustrates the framework of our proposed static-
dynamic co-teaching framework, named SDCoT++, which is
composed of three networks: a student Φ𝐵∪𝑁 , a static teacher
Φ𝐵, and a dynamic teacher Φ′

𝐵∪𝑁 . We develop our static-
dynamic co-teaching approach on the premise that the student
model Φ𝐵∪𝑁 is less vulnerable to inaccurate and incomplete
annotations when it can extensively utilize the old knowledge
from the base model Φ𝐵 and the underlying knowledge of new
data 𝐷𝑛𝑜𝑣𝑒𝑙 from Φ′

𝐵∪𝑁 . The static teacher shares the same
architecture as the student and the dynamic teacher except
for the classification head (c.f. Section III-C). The student is
the incremental detector Φ𝐵∪𝑁 that is progressively trained to
detect 𝐶𝑛𝑜𝑣𝑒𝑙 objects and is jointly taught by both teachers.
The static teacher is a frozen base model Φ𝐵, and the dynamic
teacher Φ′

𝐵∪𝑁 is an exponential moving average (EMA) of the
student. Both teacher models produce pseudo labels for 𝐶𝑏𝑎𝑠𝑒
objects in 𝐷𝑛𝑜𝑣𝑒𝑙 and provide concurrent regularization to the
student. We explain the design of co-teaching in this subsection,
the modification to the backbone networks in Section III-C,
the consolidation of pseudo labels in Section III-D, and the
training and inference details in Section III-E.

Static Teacher. The pre-trained Φ𝐵 captures essential knowl-
edge of base classes 𝐶𝑏𝑎𝑠𝑒. Considering this, we utilize a frozen
copy of Φ𝐵 as our static teacher. By employing pseudo labels,
we alleviate catastrophic forgetting of 𝐶𝑏𝑎𝑠𝑒 due to the absence
of base class labels in new training instances. For further
extraction of knowledge from the static teacher, we implement
a distillation strategy to align responses from the base and
incremental models. Particularly, our distillation approach
focuses on the prediction layer, calculating a distillation loss
that quantifies the disparity in classification logits for 𝐶𝑏𝑎𝑠𝑒
between the base and incremental models. This knowledge
distillation scheme helps to offset the lack of labels for 𝐶𝑏𝑎𝑠𝑒
objects that appear together with novel objects in a scene of
𝐷𝑛𝑜𝑣𝑒𝑙 . Additionally, the responses in the form of classification
logits for 𝐶𝑏𝑎𝑠𝑒 can offer some insights into the background, i.e.
dark knowledge [62], [69], even in the absence of base class
objects.

Dynamic Teacher. To leverage additional information from

the new data, we also design a dynamic teacher Φ′
𝐵∪𝑁 capable

of consistently acquiring the underlying knowledge associated
with both base and novel classes. We draw inspiration for
our dynamic teacher from Mean Teacher [70] which is a self-
ensembling method initially introduced to utilize unlabeled
data and mitigate over-fitting in semi-supervised learning
scenarios. SESS [71] adapts the self-ensembling method for
the semi-supervised 3D object detection task, introducing
data perturbation and consistency regularization that ensures
the consensus of locations, sizes, categories of the predicted
proposals between the student and teacher models. Furthermore,
they demonstrate superior performance with fully annotated
data which is attributed to the consistency regularization
inherent to the mean-teacher paradigm, which empowers their
framework with the capability of extracting extra underlying
knowledge from the training data. We thus integrate the
dynamic teacher with consistency regularization to enhance the
depth of knowledge extraction from the new data. In addition
to the incorporation of consistency regularization, we posit
that the dynamic teacher can offer adaptive knowledge with
respect to the base classes along the training iterations. This
dynamic teacher is therefore used to generate pseudo labels for
the base classes to direct the student to be more robust against
inaccurate pseudo labels in the new data while also improving
its expressiveness on new classes. We initialize the parameters
of the student and dynamic teacher networks from Φ𝐵, except
for the additional weights in the classifier for novel classes
which are initialized randomly.

Co-teaching Pipeline. In Figure 3, the dotted lines illustrate the
process of pseudo-label generation and the solid lines indicate
the flow of data and labels for model training and loss updates.
For the static teacher, the input point cloud X is forwarded
to the static teacher to generate 𝐾 3D bounding boxes for
the base classes 𝐶𝑏𝑎𝑠𝑒. We calibrate the class probabilities
of these 3D bounding boxes and then filter them with fixed
thresholds to obtain the pseudo labels Ŷ𝐵. Similarly, we
obtain pseudo labels Ŷ′

𝐵
from the dynamic teacher except

that only predictions for 𝐶𝑏𝑎𝑠𝑒 are used. The pseudo labels
Ŷ𝐵 and Ŷ′

𝐵
are mixed with the ground-truth novel classes

labels Y𝑁 to create the set of consolidated labels 𝑌𝑀𝑖𝑥
𝐵∪𝑁 for

supervising the student model. As described in Section III-D,
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overlapping pseudo labels are removed. Concurrently, our
SDCoT++ performs two sub-sampling operations on the input X
to generate two distinct point clouds, i.e. X𝑖 and X 𝑗 in Figure 3.
X𝑖 is fed into the dynamic teacher network while X 𝑗 undergoes
further augmentation before being input into the student and
static teacher models. The sub-sampling and augmentation
processes which include random flipping, rotation, and scaling,
constitute parts of the perturbation scheme. This strategy
enables the model to acquire valuable knowledge instead
of merely memorizing the training data. Furthermore, we
regularize the student model by 1) minimizing the discrepancies
between the classification logits of proposals from the static
teacher and the student, denoted as p𝑇

𝐵
and p𝑆

𝐵
, respectively,

and 2) ensuring consistency between the output proposals from
the student and the dynamic teacher, referred to as Ỹ𝐵∪𝑁
and Ỹ′

𝐵∪𝑁 , respectively. The regularization loss functions are
presented in III-E.

Discussion. Interestingly, the static and dynamic teachers play
antagonistic roles in the learning process. The conservative
static teacher ensures the student does not deviate too far from
the knowledge of the base model. On the other hand, the radical
dynamic teacher encourages the student to incorporate new
knowledge. Despite these opposing forces, an equilibrium is
achieved when the co-training converges due to the knowl-
edge distillation from the static teacher and the consistency
regularization by the dynamic teacher.

C. Anatomy of Backbones

Mainstream point-based 3D object detection networks either
use voting-based or query-based methods. In this paper, we
select one representative model for each type, i.e. VoteNet [1]
for voting-based methods and 3DETR [2] for query-based
methods as backbones of our 3D object detectors. Additionally,
we adopt CAGroup3D [23], a recent two-stage method that
demonstrates superior performance, as our backbone. Due to
factors including randomness, coupled prediction and proposal
alignment, the original VoteNet, 3DETR, and CAGroup3D
cannot be directly used in our framework. In this section, we
discuss the observed issues in these 3D object detectors that
hinder incremental learning and distillation between the static
teacher and the student. Subsequently, we demonstrate how
these issues can be easily addressed by minor modifications to
the detectors.

Issue 1: Stochasticity of Sub-sampling. Given the substantial
volume of points present within a point cloud, sub-sampling
becomes an indispensable step for object detection approaches
in point clouds. For example, sub-sampling is performed within
PointNet++ network in the case of utilizing PointNet++ [40]
for point-wise feature extraction. Additionally, sub-sampling
is employed during the selection of initial object proposals
(e.g. queries). The sub-sampling step inherently introduces
stochasticity regardless of employing random sampling or
other operators such as farthest point sampling. Consequently,
distinct sets of proposals are produced from the identical input
point cloud at various iterations. This stochastic nature poses a
challenge to the distillation process from the static teacher to

the student model as the aligned sets of proposals are required
for effective distillation.

Issue 2: Coupled Prediction. Some 3D object detection
methods, such as VoteNet [1], MLCVnet [38], H3DNet [39] etc,
couple the classification and localization prediction heads by
estimating class-aware sizes for bounding boxes. However, this
coupling mechanism is undesirable for incremental 3D object
detection scenarios. This is primarily due to the continuous
enrollment of new classes in class-incremental learning, neces-
sitating dynamic updates to the weights associated with class-
aware predictions. Unfortunately, the presence of a class-aware
localization prediction head complicates the incremental model
learning process. Consequently, decoupling the classification
and localization prediction heads and resorting to class-
agnostic size predictions yields a simplified implementation
and alleviates the learning burden placed on the model. Note
that this coupling issue is only present in VoteNet as 3DETR
and CAGroup3D already decoupled the classification and
localization heads.

Fix on VoteNet. VoteNet intrinsically incorporates two sub-
sampling stages: 1) sub-sample 𝑀 seeds from 𝑁 input points
via the feature learning backbone PointNet++; 2) sub-sample
𝐾 votes from V as cluster centers to generate 𝐾 proposals
by aggregating neighboring votes. To circumvent stochasticity
in these two sub-sampling steps, we retain all indices of the
sampled points and votes in the student model, and re-use
these indices for the static teacher. Consequently, the two sets
of proposals produced from the two models are aligned and
can be compared to measure the output discrepancy. Moreover,
VoteNet employs one multi-layer perceptron (MLP) layer to
process the proposal features and generate prediction scores for
each proposal. The prediction scores includes 4𝑁𝐶 box size
scores and 𝑁𝐶 category scores. The box size scores comprise
1 classification score and 3 size offsets for each size template,
which aligns with the corresponding class category. We solve
the coupling issue by first splitting the final MLP layer into
two layers, a regressor and a classifier, as illustrated in Figure
4. This segregation effectively separates the classification task
from the predictions related to other targets. Subsequently, we
only introduce new weights to the classifier for novel classes.
In this way, the class-aware size prediction in vanilla VoteNet
is replaced with a class-agnostic one, which facilitates class-
incremental 3D object detection.

Fix on 3DETR. Similar to VoteNet, 3DETR also inherits the
core sampling mechanism of PointNet++ [40], where 𝑀 seeds
are stochastically sub-sampled from 𝑁 input points. In contrast
to VoteNet, 3DETR sub-samples 𝐾 queries from a larger set of
generated queries after initial processing through transformer
layers. Each query focuses on different regions or features of
the input point cloud, guiding the model to identify potential
object locations and characteristics. We fix the stochasticity in
points and queries by storing all the indices of the sampled
points and the position embeddings of queries from the student
model for 3DETR, which are reused by the static teacher.
Additionally, the coupling issue does not exist in 3DETR, and
we incrementally add new weights for novel classes to the
classifier in 3DETR.
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Fix on CAGroup3D. CAGroup3D [23] voxelizes point clouds
and adopts a voxel-based approach for proposal generation. The
proposal generation involves 1) predicting offsets for voxels
towards their instance centers, i.e., the vote point prediction
and 2) predicting semantic scores of the voxels to filter their
vote points before grouping to produce proposals. To align
proposals between the static teacher and the student model, we
store the offsets and semantic scores from the student model
and reuse them in the static teacher. In addition, the coupling
issue does not apply to CAGroup3D. The classification head
is incrementally expanded to accommodate novel classes in
the experiments, facilitating class-incremental learning.

D. Enhanced Pseudo Labels Generation

Consolidated Pseudo Labels. The static teacher plays a pivotal
role in strengthening base class knowledge in the context
of novel scenes, while the dynamic teacher evolves through
the learning process, gradually becomes more attuned and
responsive to novel scenes, and offers increasingly refined
guidance to the student. The adaptive knowledge from the
continuously enhanced dynamic model contrasts with the
relatively stable knowledge from the static teacher, which
inspires us to consolidate outputs from the dynamic teacher
into the existing set of pseudo labels. Specifically, we use
both teachers to generate pseudo labels, i.e. 𝑌𝐵 from static
teacher Φ𝐵 and 𝑌 ′

𝐵
from the dynamic teacher Φ′

𝐵∪𝑁 for 𝐶𝑏𝑎𝑠𝑒
in each training sample in 𝐷𝑛𝑜𝑣𝑒𝑙 . Each pseudo label has an
objectness score and a classification score, based on which we
apply Non-Maximum Suppression (NMS) on filtered 𝑌𝐵 and
𝑌 ′
𝐵

to remove overlapped bounding boxes. Furthermore, we
use the same technique to filter out predicted bounding boxes
that disagree with ground-truth labels for novel classes 𝐶𝑛𝑜𝑣𝑒𝑙
to reduce confusion between base and novel classes. Formally,
the consolidated pseudo labels 𝑌𝑀𝑖𝑥

𝐵∪𝑁 is formulated as follows:

𝑌𝑀𝑖𝑥𝐵∪𝑁 = NMS
[
𝑌𝑁 ,NMS[𝜓(𝑌𝐵 | 𝜏𝑜, 𝜏𝑐), 𝜓(𝑌 ′

𝐵 | 𝜏𝑜, 𝜏𝑐)]
]
, (1)

where 𝜓(∗|𝜏𝑜, 𝜏𝑐) denotes the thresholding operator using
two fixed thresholds 𝜏𝑜 and 𝜏𝑐 for objectness scores and
classification probabilities, respectively. NMS[𝑎, 𝑏] denotes
Non-Maximum Suppression (NMS) on the union of 𝑎 and 𝑏.

Class Probability Calibration. As mentioned earlier, the signif-
icant class imbalance and co-occurrence issues prevalent in 3D
object detection datasets pose challenges when employing fixed
thresholding, particularly for filtering out low class probabilities
represented by 𝜏𝑐. Due to the class imbalance, certain classes
may consistently exhibit low probabilities. Additionally, the
use of softmax to obtain class probabilities introduces an
exponential operation that amplifies discrepancies between
logits and yields a more pronounced output, subsequently
diminishing the probabilities associated with tail classes.

One approach to address this issue is to individually fine-tune
class-specific thresholds {𝜏𝑖𝑐}

𝐶𝑏𝑎𝑠𝑒

𝑖=1 for each class to determine
their optimal values. However, the computational complexity
involved in optimizing thresholds for all classes becomes
prohibitively high. Consequently, we are inspired by [72] in
proposing to calibrate the class probabilities of pseudo labels as
an alternative solution instead of tuning class-wise thresholds.

Subsequently, a single global threshold 𝜏𝑐 can be applied to
the calibrated class probabilities.

Specifically, we utilize the object occurrence frequency of
each class to calibrate the corresponding class probabilities.
These occurrence frequencies are obtained from the class
distribution of ground-truth objects during base training. The
calibrated class probability is computed as:

𝜙 𝑗 =
𝑛 𝑗𝑒

𝜂 𝑗∑𝑘
𝑖=1 𝑛𝑖𝑒

𝜂𝑖
, (2)

where 𝑛𝑖 stands for the number of objects belonging to class 𝑖
in 𝐷𝑏𝑎𝑠𝑒, and 𝜂 𝑗 refers to the class logits before the Softmax
operator.

Moreover, our approach distinguishes itself from methods
like Calibrated Teacher [73]. We utilize object occurrence
frequency to calibrate class probabilities based on the ground-
truth distributions, ensuring that the calibrated probabilities
reflect the inherent class imbalance in the dataset. This contrasts
with Calibrated Teacher [73], which employs logistic regression
for score adjustment without explicitly considering class
distribution. Additionally, our method requires fewer trainable
parameters and avoids the extra computation of fitting an
additional calibration model. As a result, our method provides
a data-driven calibration process particularly for scenarios with
diverse class distributions and for incremental learning of new
classes.

E. Training and Inference

Training. During training, the student model is updated for
each training iteration 𝑡 by a weighted sum of the three losses:

L = 𝜆𝑠L𝑠𝑢𝑝 + 𝜆𝑑L𝑑𝑖𝑠 + 𝜆𝑐L𝑐𝑜𝑛, (3)

where 𝜆𝑠, 𝜆𝑑 , and 𝜆𝑐 are hyperparameters to control the
contributions of each loss function.

The supervised loss L𝑠𝑢𝑝 is computed between the output
proposals from the student Ỹ𝐵∪𝑁 and the mixed pseudo and
ground-truth labels Ŷ𝑀𝑖𝑥

𝐵∪𝑁 that undergo the same augmentation
process as X 𝑗 . The supervised loss is computed using its
original loss function when VoteNet [1] is adopted as the
backbone. Similarly, we utilize the original supervised loss in
[2] when 3DETR [2] and CAGroup3D [23] are the backbones.

The distillation loss L𝑑𝑖𝑠 is calculated to quantify the
differences between the classification logits p𝑇

𝐵
and p𝑆

𝐵
. To

normalize the classification logits, we subtract their mean over
class dimension, resulting in p̄𝑇

𝐵
and p̄𝑆

𝐵
, respectively. The

distillation loss is then expressed as follows:

L𝑑𝑖𝑠 =
1
𝐾

𝐾∑︁
𝑖=1

| |p̄𝑆𝐵,𝑖 − p̄𝑇𝐵,𝑖 | |2, (4)

where p̄∗
𝐵,𝑖

is a vector with a dimension of |𝐶𝑏𝑎𝑠𝑒 | that denotes
the normalized classification logits of 𝑖𝑡ℎ proposal.

Following SESS [71], the consistency loss L𝑐𝑜𝑛 is computed
by comparing the output proposals from the student with the
output proposals of the dynamic teacher Ỹ′

𝐵∪𝑁 augmented by
the same steps as above. Formally, it is computed as:

Lcon = 𝜆𝑐1Lcenter + 𝜆𝑐2Lclass + 𝜆𝑐3Lsize, (5)
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where L𝑐𝑒𝑛𝑡𝑒𝑟 , L𝑐𝑙𝑎𝑠𝑠 and L𝑠𝑖𝑧𝑒 denote the center consistency
loss, class consistency loss, and size consistency loss, respec-
tively. We follow SESS to fix 𝜆𝑐1 = 1, 𝜆𝑐2 = 2 and 𝜆𝑐3 = 1. Refer
to SESS [71] for a more comprehensive explanation of the
loss terms.

Once the student model is updated, the parameters of the
dynamic teacher are updated using exponential moving average
(EMA) of the parameters of the student: Φ′

𝑡 = 𝛼Φ
′
𝑡−1 + (1 −

𝛼)Φ𝑡 1. 𝛼 denotes a hyperparameter to determine the extent
of information derived from the student.

Inference. During inference, an input point cloud is fed directly
into the dynamic teacher to generate 3D bounding boxes. These
boxes are then refined through a Non-Maximum Suppression
(NMS) module.

IV. EXPERIMENTS

A. Datasets and Settings

Datasets. We assess the 3D object detection performance of
our SDCoT++ on two indoor datasets, SUN RGB-D [24] and
ScanNet [25]. SUN RGB-D [24] comprises 5, 285 training
samples and 5, 050 validation samples across hundreds of object
classes. Following the established evaluation protocol used in
prior works [1], [27], we focus our evaluation on the 10 most
common categories. ScanNet [25] contains 1, 201 training
samples and 312 validation samples, where it does not provide
oriented 3D bounding boxes but offers point-level semantic
segmentation labels. We adopt the approach from VoteNet to
extract axis-aligned bounding boxes from the point-level labels
and evaluate on the same 18 object classes.

The two datasets are both highly unbalanced across classes.
This unbalanced data can cause the insufficient training problem
when the added novel class has very few samples, e.g. the
addition of ‘toilet’ class with only 174 training samples in
SUN RGB-D does not perform well under batch incremental
3D object detection setting (see the results under |𝐶𝑛𝑜𝑣𝑒𝑙 | = 1
setting in Table I. Furthermore, the number of instances per
scan in ScanNet is larger than that in SUN RGB-D, which can
be observed in our qualitative examples in the supplementary
material, where the scenes in ScanNet are more cluttered.

Furthermore, we conduct preliminary experiments on the
KITTI [26] outdoor driving dataset. The KITTI dataset is a
widely used benchmark in autonomous driving. It comprises
7, 481 training samples and 7, 518 test samples. The training
data is typically divided into a training split of 3, 712 samples
and a validation split of 3, 769 samples.

Setup. We facilitate the datasets for class-incremental learning
by selecting a subset of classes by the alphabetical order in
one dataset as 𝐶𝑏𝑎𝑠𝑒 and leaving the remainder as 𝐶𝑛𝑜𝑣𝑒𝑙 ,
aligning with the class splitting approach used in [17]. 𝐷𝑏𝑎𝑠𝑒
consists of training samples that include any class of 𝐶𝑏𝑎𝑠𝑒,
disregarding annotations for 𝐶𝑛𝑜𝑣𝑒𝑙 . 𝐷𝑛𝑜𝑣𝑒𝑙 is formed similarly
for 𝐶𝑛𝑜𝑣𝑒𝑙 . 𝐷𝑏𝑎𝑠𝑒 and 𝐷𝑛𝑜𝑣𝑒𝑙 might include duplicating point
clouds. However, their difference in labels reflects the shifted
focus on the classes.

1The subscripts of Φ𝐵∪𝑁 and Φ′
𝐵∪𝑁 are omitted for brevity.

We assess the performance of our SDCoT++ under two dis-
tinct class-incremental 3D object detection scenarios. 1) Batch
incremental learning. In this scenario, all novel classes are
introduced simultaneously, allowing Φ𝐵∪𝑁 to be updated with
the full set of novel classes. To address potential biases due
to specific class characteristics, we consider different numbers
of novel classes in this scenario. Specifically, we split the
classes by: a) |𝐶𝑛𝑜𝑣𝑒𝑙 | = |𝐶𝑏𝑎𝑠𝑒 |; b) |𝐶𝑛𝑜𝑣𝑒𝑙 | < |𝐶𝑏𝑎𝑠𝑒 | and
|𝐶𝑛𝑜𝑣𝑒𝑙 | > 1; c) |𝐶𝑛𝑜𝑣𝑒𝑙 | = 1. 2) Sequential incremental
learning. The novel classes are divided into subsets and
introduced to the system sequentially. In this scenario, the
static teacher network is updated using the currently learned
student network after each incremental step. The names of the
base and novel classes across different splits are provided in
the supplementary material.

In the outdoor scenario, we select Car, Pedestrian and Cyclist
as the three base classes. We choose Van and Truck as the two
novel classes for batch-incremental learning.

Evaluation Metric. The primary metric we use for evaluating
3D object detection performance is the mean average precision
(mAP). For ScanNet and SUN RGB-D, our reported results are
based on mAP calculated with a 3D Intersection over Union
(IoU) threshold of 0.25, i.e. mAP@0.25. For the KITTI dataset,
we use mAP with the same IoU thresholds as in [74] for Car,
Pedestrian, and Cyclist, and apply the same IoU thresholds as
Car for Van and Truck.

B. Implementation Details

In the experiments, we select three representative models, i.e.
VoteNet [1] for voting-based methods, and 3DETR [2] for
query-based methods, and two-stage CAGroup3D [23] as our
3D object detector backbones. We assign 𝜏𝑜 and 𝜏𝑐 for pseudo
labels as 0.95 and 0.9, respectively. The weights assigned in
the loss function Eq. 3 are 𝜆𝑠=10, 𝜆𝑑=1, and 𝜆𝑐=10. A ramp-
up strategy [70] is employed to gradually increase the impact
of 𝜆𝑑 and 𝜆𝑐 during the first 30 epochs, utilizing a sigmoid-
shaped function 𝑒−5(1−𝑡 )2

, where 𝑡 progresses linearly from
0 to 1 throughout the ramp-up phase. Following SESS [71],
we assign 𝛼 in EMA as 0.99 during ramp-up and adjust it to
0.999 for subsequent training. For VoteNet and 3DETR, the
base network Φ𝐵 and the student network Φ𝐵∪𝑁 are optimized
using the Adam optimizer. The initial learning rate for Φ𝐵 is
0.001, which is reduced by a factor of 0.1 at the 80𝑡ℎ and 120𝑡ℎ
epoch. For CAGroup3D, Φ𝐵 is optimized with the AdamW
optimizer [75]. The initial learning rate and the weight decay
are 0.001 and 0.0001, respectively. The initial learning rate
for Φ𝐵∪𝑁 is adjusted according to the specific settings of
class-incremental learning.

C. Baselines

We compare our approach with the following baselines for
class-incremental 3D object detection.

• “freeze and add”: freezes the base model Φ𝐵 trained with
𝐷𝑏𝑎𝑠𝑒 and appends a new classifier for 𝐶𝑛𝑜𝑣𝑒𝑙 trained on
𝐷𝑛𝑜𝑣𝑒𝑙 to the classification branch of Φ𝐵.
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TABLE I: Batch incremental 3D object detection performance (mAP@0.25) in the SUN RGB-D val set with various backbones. No. 1, 10,
and 19 are the base models trained only on 𝐶𝑏𝑎𝑠𝑒 using different backbones. No. 2-8, No. 11-17, and No. 20-22 are incremental learning
methods initialized by the corresponding base model and trained on 𝐶𝑛𝑜𝑣𝑒𝑙 . No. 9, 18, and 23 represent the corresponding model jointly
trained on all classes.

Method Model |𝐶𝑛𝑜𝑣𝑒𝑙 | = 5 |𝐶𝑛𝑜𝑣𝑒𝑙 | = 3 |𝐶𝑛𝑜𝑣𝑒𝑙 | = 1
Base Novel All Base Novel All Base Novel All

1 Base training

VoteNet

57.58 - - 53.73 - - 55.10 - -
2 Freeze and add 54.24 10.61 32.42 51.94 12.64 40.16 54.63 0.90 49.26
3 Fine-tuning 3.48 54.09 28.79 4.10 60.17 20.92 14.86 1.38 13.51
4 SDCoT w/o 𝐿𝑑𝑖𝑠 & 𝐿𝑐𝑜𝑛 52.17 50.12 51.14 38.96 63.68 46.38 26.83 24.77 26.63
5 SDCoT w/o 𝐿𝑑𝑖𝑠 50.35 59.88 55.12 37.91 66.39 46.45 30.85 29.96 30.76
6 SDCoT w/o 𝐿𝑐𝑜𝑛 52.92 57.11 55.01 41.81 63.45 48.30 31.61 25.78 31.02
7 SDCoT [27] 53.61 60.80 57.21 44.48 67.41 51.36 36.81 42.69 37.40
8 SDCoT++ 53.95 61.78 57.87 44.88 67.33 51.62 38.44 41.72 38.77
9 Joint training 58.92 58.80 58.86 54.8 68.33 58.86 55.36 90.36 58.86

10 Base training

3DETR

56.60 - - 55.30 - - 56.39 - -
11 Freeze and add 54.15 10.18 32.17 55.01 11.95 42.09 55.48 0.65 50.00
12 Fine-tuning 3.83 53.94 28.89 4.40 60.71 21.29 15.92 1.31 14.46
13 SDCoT w/o 𝐿𝑑𝑖𝑠 & 𝐿𝑐𝑜𝑛 49.55 58.11 53.83 41.97 65.81 49.12 27.01 24.68 26.78
14 SDCoT w/o 𝐿𝑑𝑖𝑠 50.44 60.64 55.54 42.13 67.94 49.87 31.19 29.91 31.06
15 SDCoT w/o 𝐿𝑐𝑜𝑛 51.37 61.02 56.20 42.77 67.56 50.21 32.26 27.28 31.76
16 SDCoT [27] 53.13 60.64 56.89 44.35 67.62 51.33 37.81 43.13 38.34
17 SDCoT++ 55.12 60.92 58.02 45.35 69.43 52.57 40.02 43.11 40.33
18 Joint training 57.92 59.98 58.95 54.37 69.63 58.95 55.39 91.00 58.95

19 Base training

CAGroup3D

62.23 - - 60.09 - - 63.84 - -
20 Fine-tuning 4.37 67.69 36.03 4.45 70.91 24.39 17.24 1.94 15.71
21 SDCoT [27] 56.80 67.06 61.93 49.57 71.11 56.03 41.25 46.47 41.76
22 SDCoT++ 58.01 67.31 62.66 52.73 71.47 58.35 43.37 43.69 43.40
23 Joint training 65.40 68.20 66.80 63.32 74.92 66.80 63.90 92.91 66.80

TABLE II: Batch incremental 3D object detection performance (mAP@0.25) in the ScanNet val set with various backbones. No. 1, 10,
and 19 are the base models trained only on 𝐶𝑏𝑎𝑠𝑒 using different backbones. No. 2-8, No. 11-17, and No. 20-22 are incremental learning
methods initialized by the corresponding base model and trained on 𝐶𝑛𝑜𝑣𝑒𝑙 . No. 9, 18, and 23 represent the corresponding model jointly
trained on all classes.

Method Model |𝐶𝑛𝑜𝑣𝑒𝑙 | = 9 |𝐶𝑛𝑜𝑣𝑒𝑙 | = 4 |𝐶𝑛𝑜𝑣𝑒𝑙 | = 1
Base Novel All Base Novel All Base Novel All

1 Base training

VoteNet

60.75 - - 53.14 - - 56.89 - -
2 Freeze and add 58.85 4.22 31.53 49.85 3.15 39.47 56.24 0.29 53.14
3 Fine-tuning 1.91 52.39 27.15 1.09 59.44 14.05 0.25 12.98 0.96
4 SDCoT w/o 𝐿𝑑𝑖𝑠 & 𝐿𝑐𝑜𝑛 53.09 46.42 49.76 48.27 63.87 51.74 47.91 27.89 46.80
5 SDCoT w/o 𝐿𝑑𝑖𝑠 51.21 53.58 52.39 48.45 69.82 53.19 48.60 30.07 47.57
6 SDCoT w/o 𝐿𝑐𝑜𝑛 53.31 51.22 52.26 48.54 67.52 52.76 49.31 30.52 48.26
7 SDCoT [27] 53.75 54.91 54.33 49.50 70.85 54.25 52.01 31.71 50.89
8 SDCoT++ 53.41 56.81 55.11 50.89 71.18 55.40 54.08 33.46 52.94
9 Joint training 58.90 54.13 56.51 53.16 68.23 56.51 57.83 34.16 56.51

10 Base training

3DETR

64.80 - - 59.73 - - 65.37 - -
11 Freeze and add 60.99 4.07 32.53 55.59 1.81 43.64 60.46 0.14 57.11
12 Fine-tuning 0.22 56.45 28.33 0.30 64.19 14.50 0.07 29.16 1.69
13 SDCoT w/o 𝐿𝑑𝑖𝑠 & 𝐿𝑐𝑜𝑛 63.20 59.86 61.53 56.43 72.46 59.99 62.67 35.25 61.15
14 SDCoT w/o 𝐿𝑑𝑖𝑠 68.08 55.13 61.61 60.73 69.06 62.57 64.59 36.70 63.04
15 SDCoT w/o 𝐿𝑐𝑜𝑛 66.02 55.22 60.62 59.73 66.72 61.28 65.26 27.50 63.16
16 SDCoT [27] 66.79 61.25 64.02 59.96 71.97 62.63 65.45 40.81 64.08
17 SDCoT++ 69.11 61.76 65.44 61.57 72.99 64.11 66.56 38.25 64.98
18 Joint training 68.70 62.02 64.94 63.02 73.55 64.94 66.43 39.60 64.94
19 Base training

CAGroup3D

74.25 - - 70.02 - - 71.38 - -
20 Fine-tuning 2.73 63.63 33.18 1.43 73.72 17.49 1.10 39.76 3.25
21 SDCoT [27] 71.04 65.57 68.31 66.04 75.72 68.19 67.66 43.88 66.34
22 SDCoT++ 72.35 65.22 68.79 66.81 77.59 69.21 68.57 43.29 67.16
23 Joint training 77.91 72.33 75.12 73.31 81.46 75.12 75.80 63.60 75.12
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• “fine-tuning”: updates all parameters of the base model
(excluding the old classifier) adds a new classifier for
𝐶𝑛𝑜𝑣𝑒𝑙 with 𝐷𝑛𝑜𝑣𝑒𝑙 .

• “SDCoT and its variants” includes SDCoT [27] and its
three variants with each omitting a different component:
1) Without the distillation loss (L𝑑𝑖𝑠); 2) Without the
consistency loss (L𝑐𝑜𝑛); 3) Without both of them. When
the consistency loss is omitted, the dynamic teacher is
entirely removed; when the distillation loss is omitted, the
static teacher is only utilized for generating pseudo labels.

• “Joint training”: the model is fully supervised for all
classes in all scenes, which serves as a reference of the
upper-bound performance.

D. Quantitative Results

Batch Incremental Learning. Table I and II demonstrate the
batch incremental 3D object detection results performed under
3 base-novel splits on SUN RGB-D and ScanNet, respectively.
In both tables, VoteNet serves as the backbone model for
experiments No. 1-9, 3DETR is used for experiments No. 10-
18, and CAGroup3D is adopted for experiments No. 19-23.
Experiment No. 1 is the base training on 𝐶𝑏𝑎𝑠𝑒. Experiments
No. 2-8 list the results when 𝐶𝑛𝑜𝑣𝑒𝑙 is added in one batch,
and experiment No. 9 is an upper-bound jointly trained on
𝐶𝑏𝑎𝑠𝑒 ∪ 𝐶𝑛𝑜𝑣𝑒𝑙 . Results are arranged in a similar manner for
experiments No. 10-18 and No. 19-23. As presented in the
tables, straightforward solutions including “freeze and add”
and “fine-tuning” exhibit significant performance degradation
for either novel or base classes across all splits on both
datasets. The “freeze and add” approach yields inferior results
for 𝐶𝑛𝑜𝑣𝑒𝑙 despite generally maintaining the performance on
𝐶𝑏𝑎𝑠𝑒. Conversely, “fine-tuning” the model on 𝐶𝑛𝑜𝑣𝑒𝑙 results
in catastrophic forgetting of 𝐶𝑏𝑎𝑠𝑒.

Incorporating pseudo labels with ground-truth labels (No. 4
and 13 in Table I and II) notably aids the incremental model in
retaining knowledge from previous classes. Moreover, adding
the distillation loss (No. 6 versus 4 and 15 versus 13 in Table I
and II) leads to noticeable improvements on the base classes
across various settings compared to only using pseudo labels
alone, indicating that the distillation loss effectively leverages
additional knowledge from the static teacher. Notably, the
performance with L𝑑𝑖𝑠 also exceeds that without L𝑑𝑖𝑠 for
novel classes in most settings, suggesting that the distillation
loss helps to minimize confusion caused by background regions
in the incremental model. The addition of the consistency loss
(No. 5 compared to No. 4 and 14 compared to No. 13 in
Table I and II) leads to consistent and notable improvements
on the novel classes for VoteNet and 3DETR, respectively.
These improvements highlight the effectiveness of the dynamic
teacher in assimilating the underlying knowledge from new data.
Comparing No. 13-15, it is noted that the superior performance
of No. 13 over No. 14 and 15 under the ‘Novel’ split can
be attributed to the different roles of the loss functions and
backbone architecture. The inclusion of the consistency loss
(𝐿𝑐𝑜𝑛) in No. 14 helps transfer knowledge but shows limited
gains in novel classes due to 3DETR’s strong retention of
base-class knowledge. No. 15, which uses the distillation

loss (𝐿𝑑𝑖𝑠), improves base-class performance but sacrifices
novel class results. The observation supports the discussion on
balancing performance for base and novel classes at the end
of Section III-B. Combining the three losses (No. 7 and 16
in Table I and II), our SDCoT [27] demonstrates superior
performance on both base and novel classes compared to
its three variants, showcasing its capability to adapt to new
knowledge while preserving existing knowledge. Finally, our
SDCoT++ outperforms all baselines under all base-novel splits
for both datasets with both backbone models. Our approach
consistently enhances detection performance for base classes,
which effectively alleviates the forgetting problem by providing
better pseudo labels through incorporating pseudo labels
from the dynamic teacher and calibrating class probabilities.
Moreover, it also lifts performance in novel classes under
some settings, e.g. VoteNet-ScanNet-𝐶𝑛𝑜𝑣𝑒𝑙 = 9, which can be
attributed to the removal of pseudo labels overlapping ground-
truth labels for novel classes during mixed label generation.
It is worth noting that the experiments with 3DETR as the
backbone show more significant improvements overall, bringing
performance closer to the oracle baseline. This enhanced
performance with 3DETR underscores the effectiveness of
our approach in leveraging transformer-based architectures
for complex class-incremental learning tasks. In addition, the
observation that joint training performs worse than base training
for base classes with VoteNet is attributed to the presence
of novel classes acting as distractions. For instance, classes
like “desk” and “table” share similar features and spatial
characteristics, which can confuse the model during joint
training. This overlap complicates class distinction, resulting in
degraded performance compared to base training, where such
distractions are absent.

To validate generality of our approach with more advanced
detectors, we incorporate experiments using CAGroup3D [23].
It can be observed that the proposed SDCoT [27] signifi-
cantly outperforms the fine-tuning baseline under all settings,
demonstrating its capability to retain knowledge of base classes.
Moreover, SDCoT++ consistently improves performance on
base classes across both datasets and splits, contributing to
better overall performance. It also maintains or enhances
detection performance for novel classes, e.g. CAGroup3D-
ScanNet-𝐶𝑛𝑜𝑣𝑒𝑙 = 4.

Sequential Incremental Learning. Table III and IV present
the average precision (AP) for each class when novel classes
are incrementally introduced in a sequential manner for class-
incremental learning. We evaluate our method using two
consecutive subsets of novel classes on SUN RGB-D and
ScanNet, respectively. The incremental model first adapts to the
initial subset of novel classes using the base model. The model
after adaptation is considered the new base model, which is used
to initialize the incremental model trained on the next subset of
novel classes. In SUN RGB-D, SDCoT++ outperforms SDCoT
at two consecutive incremental learning steps, regardless of the
choice of backbones, as shown in Table III. The advantage of
SDCoT++ is also seen in Table IV, which confirms the validity
of our SDCoT++ under the sequential incremental learning
scenario.



11

TABLE III: Sequential incremental object detection performance (AP@0.25) of each class in the SUN RGB-D val set. The model sequentially
learns 5 novel classes in 2 batches. B[1-5] represents base training on 5 base classes. +N[6,7,8] and +N[9, 10] denote incremental training on
novel classes. B[1-10] represents joint training on all classes.

Model bath bed bookshelf chair desk dresser nightstand sofa table toilet mAP

B[1-5]

VoteNet

74.71 85.53 32.75 73.02 24.96 - - - - - 58.19
+ N[6,7,8] SDCoT [27] 51.57 84.04 23.83 62.83 16.94 26.04 57.34 59.75 - - 47.79
+ N[6,7,8] SDCoT++ 49.67 84.52 29.46 65.87 15.27 25.99 59.99 61.62 - - 49.05
+ N[9, 10] SDCoT [27] 36.59 79.60 10.35 60.12 15.16 12.80 35.15 56.51 46.95 88.08 44.13
+ N[9, 10] SDCoT++ 38.91 82.47 13.75 61.34 14.28 15.35 38.59 59.26 44.93 89.32 45.82
B[1-10] 78.49 84.31 32.62 73.73 25.44 30.90 58.11 64.15 50.48 90.36 58.86

B[1-5]

3DETR

73.97 84.71 30.19 75.09 23.93 - - - - - 57.58
+ N[6,7,8] SDCoT [27] 71.01 82.44 28.28 73.38 21.94 30.99 59.75 64.38 - - 54.02
+ N[6,7,8] SDCoT++ 71.93 82.34 28.06 72.50 24.04 31.26 60.81 65.40 - - 54.54
+ N[9, 10] SDCoT [27] 46.61 80.89 15.29 61.41 15.04 14.51 37.71 59.22 46.57 89.17 46.64
+ N[9, 10] SDCoT++ 48.78 83.84 17.59 62.81 17.91 14.09 38.64 59.45 47.20 89.39 47.97
B[1-10] 69.80 84.60 28.50 72.40 34.30 29.60 61.40 65.30 52.60 91.00 58.95

TABLE IV: Sequential incremental object detection performance (AP@0.25) of each class in the ScanNet val set. The model sequentially
learns 5 novel classes in 2 batches. B[1-14] represents base training on 5 base classes. +N[15,16] and +N[17, 18] denote incremental training
on novel classes. B[1-18] represents joint training on all classes.

Model bath bed bkshlf cbnt chair cntr crtn desk door ofurn pctr refri shwr sink sofa table toil wind mAP

B[1-14]

VoteNet

75.93 84.17 47.86 35.73 87.09 51.50 44.02 68.67 45.52 41.47 6.86 44.08 60.13 50.97 - - - - 53.14
+ N[15, 16] SDCoT [27] 49.10 84.28 39.24 30.70 86.16 39.16 40.29 58.86 35.09 33.60 2.66 41.51 28.72 50.02 86.65 56.66 - - 47.67
+ N[15, 16] SDCoT++ 61.67 84.81 44.38 29.18 85.51 27.42 32.79 57.89 33.26 33.89 2.11 39.02 52.29 39.02 87.17 56.98 - - 47.96
+ N[17, 18] SDCoT [27] 39.31 83.22 37.60 18.62 82.04 0.39 30.76 36.78 21.57 30.48 0.11 33.38 27.48 19.70 84.32 57.18 95.34 37.73 40.89
+ N[17, 18] SDCoT++ 50.08 84.25 35.09 22.20 84.02 2.02 31.55 33.61 30.32 30.52 1.39 31.95 26.13 16.92 86.58 56.89 93.74 36.09 41.85
B[1-18] 70.85 85.12 46.70 37.37 85.79 54.15 40.83 66.08 43.17 41.37 5.84 50.55 58.62 57.85 85.22 55.05 98.50 34.16 56.51

B[1-14]

3DETR

78.88 79.68 39.56 49.82 87.67 57.65 45.59 71.52 48.48 47.67 9.65 53.56 69.71 68.52 - - - - 57.71
+ N[15, 16] SDCoT [27] 71.81 78.79 27.14 40.78 87.59 52.53 32.03 52.54 40.15 44.79 9.75 51.50 61.84 60.00 86.30 66.27 - - 53.99
+ N[15, 16] SDCoT++ 74.91 79.62 25.64 35.80 87.58 52.01 34.95 58.27 40.12 46.27 9.25 53.97 63.67 65.38 86.15 65.11 - - 54.92
+ N[17, 18] SDCoT [27] 71.40 78.91 20.96 37.44 88.31 47.05 31.91 45.82 37.75 43.05 9.67 46.60 53.02 55.64 84.89 61.43 96.10 37.08 52.61
+ N[17, 18] SDCoT++ 73.89 78.73 21.73 32.14 87.99 49.57 34.71 51.38 39.03 45.96 8.28 48.50 54.65 62.88 85.50 62.88 95.32 35.54 53.82
B[1-18] 92.20 83.60 56.40 49.40 90.90 55.90 58.30 79.20 52.40 53.00 15.20 57.60 67.60 70.60 89.80 67.60 97.20 39.60 65.36

Furthermore, when using VoteNet as backbone, comparing
batch incremental and sequential incremental experiments, we
attain a 45.82% mAP across all classes in SUN RGB-D after
sequentially adding 5 novel classes in two batches, as shown
in the final entry of the fifth row in Table III. The result is
lower than the 57.87% mAP obtained by adding the 5 classes
all at once, which is reported in the |𝐶𝑛𝑜𝑣𝑒𝑙 = 5, 𝐴𝑙𝑙 | column
in the eighth row of Table I. A similar trend is observed on
ScanNet, indicating that the sequential incremental learning
setting is more challenging than batch incremental learning
and merits further investigation by future research. Examining
the performance of each base class individually in Table III
and IV, we notice that the classes experiencing significant
performance drops during sequential incremental learning are
where the model tends to have weaker detection capabilities in
the initial base training stage (base training). Although there
is a performance decline in sequential incremental learning
compared to batch incremental learning, it does not lead to
severe catastrophic forgetting, as observed with fine-tuning.

E. Ablation Studies

We present ablation studies of SDCoT++ in Table V, VI,
and VII to investigate the effects of the two components
introduced in this paper: consolidated pseudo labels and
class probability calibration, which enhance the pseudo label
generation, across different incremental settings. In all the
three tables, SDCoT with consolidated pseudo labels (SD-
CoT+) consistently outperforms the original SDCoT with both

backbones and under all splits. This validates the effectiveness
of using consolidated pseudo labels from both teachers for
class incremental 3D object detection. Moreover, introducing
class probability calibration (SDCoT++) further enhances the
model. In Table. V and VI, the performance gain is consistent
for base classes while its effect on novel classes is less stable,
especially in the extreme case where 𝐶𝑛𝑜𝑣𝑒𝑙 = 1. In the chal-
lenging sequential incremental learning scenario, the additional
probability calibration brings performance enhancement to
SDCoT++ in every incremental stage compared to SDCoT+,
as demonstrated in Table. VII.

We conduct additional experiments to assess the impact of
different hyperparameters, particularly on the thresholds for
objectness scores (𝜏𝑜) and classification probabilities (𝜏𝑐) as
incremental learning is sensitive to these choices. As presented
in Table IX and Table X, we vary 𝜏𝑜 and 𝜏𝑐 in steps of 0.05
to observe their effects on model performance. The results
show that the optimal objectness threshold (𝜏𝑜 = 0.95) and
classification probability threshold (𝜏𝑐 = 0.9) produced the best
overall performance (mAP@0.25). While higher thresholds help
filter out incorrect pseudo-labels, overly strict thresholds can
lead to a performance drop, indicating that careful balancing
of these parameters is crucial for maximizing performance.

F. Strategies for Distillation Loss Configuration

We explore the impacts of different configurations of
the distillation loss focusing on various distillation targets,
such as classification logits and bounding box regression
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TABLE V: Ablation studies in the batch incremental setting. The results (mAP@0.25) are reported in the SUN RGB-D val set. SDCoT+
refers to SDCoT with mixed pseudo labels proposed in Section III-D. SDCoT++ refers to SDCoT with mixed pseudo labels and calibrated
probabilities proposed in Section III-D and Section III-D, respectively.

Method Model |𝐶𝑛𝑜𝑣𝑒𝑙 | = 5 |𝐶𝑛𝑜𝑣𝑒𝑙 | = 3 |𝐶𝑛𝑜𝑣𝑒𝑙 | = 1
Base Novel All Base Novel All Base Novel All

1 SDCoT [27]
VoteNet

53.61 60.80 57.21 44.48 67.41 51.36 36.81 42.69 37.40
2 SDCoT+ 53.81 61.26 57.54 44.53 67.36 51.38 38.41 37.79 38.35
3 SDCoT++ 53.95 61.78 57.87 44.88 67.33 51.62 38.44 41.72 38.77
4 SDCoT [27]

3DETR
53.13 60.64 56.89 44.35 67.62 51.33 37.81 43.13 38.34

5 SDCoT+ 54.34 60.99 57.67 45.19 69.08 52.36 39.97 43.01 40.27
6 SDCoT++ 55.12 60.92 58.02 45.35 69.43 52.57 40.02 43.11 40.33

TABLE VI: Ablation studies in the batch incremental setting. The results (mAP@0.25) are reported in the ScanNet val set. SDCoT+
refers to SDCoT with mixed pseudo labels proposed in Section III-D. SDCoT++ refers to SDCoT with mixed pseudo labels and calibrated
probabilities proposed in Section III-D and Section III-D, respectively.

Method Model |𝐶𝑛𝑜𝑣𝑒𝑙 | = 9 |𝐶𝑛𝑜𝑣𝑒𝑙 | = 4 |𝐶𝑛𝑜𝑣𝑒𝑙 | = 1
Base Novel All Base Novel All Base Novel All

1 SDCoT [27]
VoteNet

53.75 54.91 54.33 49.50 70.85 54.25 52.01 31.71 50.89
2 SDCoT+ 53.97 56.8 55.38 49.85 71.96 54.76 53.16 31.26 51.94
3 SDCoT++ 53.41 56.81 55.11 50.89 71.18 55.40 54.08 33.46 52.94
4 SDCoT [27]

3DETR
66.79 61.25 64.02 59.96 71.97 63.22 65.45 40.81 64.08

5 SDCoT+ 68.88 61.60 65.21 61.86 71.42 63.99 66.14 38.29 64.59
6 SDCoT++ 69.11 61.76 65.44 61.57 72.99 64.11 66.56 38.25 64.99

TABLE VII: Ablation studies in the sequential incremental object detection performance (AP@0.25) of each class in the SUN RGB-D val
set. The model sequentially learns 5 novel classes in 2 batches. B[1-5] represents base training on 5 base classes. +N[6,7,8] and +N[9, 10]
denote incremental training on novel classes. B[1-10] represents Joint training on all classes. SDCoT+ refers to SDCoT with mixed pseudo
labels proposed in Section III-D. SDCoT++ refers to SDCoT with mixed pseudo labels and calibrated probabilities proposed in Section III-D
and Section III-D, respectively.

Model bath bed bookshelf chair desk dresser nightstand sofa table toilet mAP

B[1-5]

VoteNet

74.71 85.53 32.75 73.02 24.96 - - - - - 58.19
+ N[6,7,8] SDCoT [27] 51.57 84.04 23.83 62.83 16.94 26.04 57.34 59.75 - - 47.79
+ N[6,7,8] SDCoT+ 48.36 82.16 22.76 67.04 17.48 24.34 60.13 61.41 - - 47.96
+ N[6,7,8] SDCoT++ 49.67 84.52 29.46 65.87 15.27 25.99 59.99 61.62 - - 49.05
+ N[9, 10] SDCoT [27] 36.59 79.60 10.35 60.12 15.16 12.80 35.15 56.51 46.95 88.08 44.13
+ N[9, 10] SDCoT+ 38.57 82.35 13.62 57.24 14.84 14.79 41.86 54.35 48.82 86.74 45.33
+ N[9, 10] SDCoT++ 38.91 82.47 13.75 61.34 14.28 15.35 38.59 59.26 44.93 89.32 45.82
B[1-10] 78.49 84.31 32.62 73.73 25.44 30.90 58.11 64.15 50.48 90.36 58.86

B[1-5]

3DETR

73.97 84.71 30.19 75.09 23.93 - - - - - 57.58
+ N[6,7,8] SDCoT [27] 71.01 82.44 28.28 73.38 21.94 30.99 59.75 64.38 - - 54.02
+ N[6,7,8] SDCoT+ 70.15 82.81 28.82 70.83 21.18 32.79 61.26 63.93 - - 53.97
+ N[6,7,8] SDCoT++ 71.93 82.34 28.06 72.50 24.04 31.26 60.81 65.40 - - 54.54
+ N[9, 10] SDCoT [27] 46.61 80.89 15.29 61.41 15.04 14.51 37.71 59.22 46.57 89.17 46.64
+ N[9, 10] SDCoT+ 48.54 82.62 15.33 62.27 18.39 14.87 37.72 58.23 49.12 88.16 47.53
+ N[9, 10] SDCoT++ 48.78 83.84 17.59 62.81 17.91 14.09 38.64 59.45 47.20 89.39 47.97
B[1-10] 69.80 84.60 28.50 72.40 34.30 29.60 61.40 65.30 52.60 91.00 58.95

TABLE VIII: Impacts of distillation targets on object detection
performance of SDCoT++. The results are reported on SUN RGB-D
dataset with |𝐶𝑛𝑜𝑣𝑒𝑙 | = 5.

Class Center Size Base Novel All
50.95 60.41 55.68

✓ ✓ 53.01 61.29 57.15
✓ ✓ 53.55 61.25 57.40
✓ ✓ ✓ 53.19 61.33 57.26
✓ 53.95 61.78 57.87

values (including center and size). Additionally, we examine
alternative loss functions and assess the influence of these
variations on the performance of the model. We adopt VoteNet
as our backbone for the study.

Distillation Targets. Table VIII presents the outcomes of
utilizing various distillation targets for calculating the final

TABLE IX: Impact of objectness threshold 𝜏𝑜 on incremental
learning performance mAP@0.25 (ScanNet val, VoteNet,
|𝐶𝑛𝑜𝑣𝑒𝑙 | = 9, 𝜏𝑐 = 0.9).

𝜏𝑜 Base Novel All
0.80 40.81 49.37 45.09
0.85 44.23 51.94 48.09
0.90 49.20 55.13 50.17
0.95 53.41 56.81 55.11

distillation loss. Specifically, we compute the mean square
error between the outputs related to size and center from
Φ𝐵 and Φ𝐵∪𝑁 , in addition to the class-aware distillation loss
we originally employed. The table illustrates that class-aware
distillation effectively enhances the detection performance by
preserving base class knowledge, while size-aware and center-
aware distillation do not enhance the extraction of valuable
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TABLE X: Impact of classification probability threshold 𝜏𝑐 on
incremental learning performance mAP@0.25 (ScanNet val,
VoteNet, |𝐶𝑛𝑜𝑣𝑒𝑙 | = 9, 𝜏𝑜 = 0.95).

𝜏𝑐 Base Novel All
0.70 49.50 47.44 48.47
0.75 49.59 47.66 48.63
0.80 50.44 50.38 50.41
0.85 52.06 52.41 52.24
0.90 53.41 56.81 55.11
0.95 50.99 50.74 50.87
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Fig. 5: Impacts of different distillation loss functions on object
detection performance of SDCoT++. The results are reported on SUN
RGB-D dataset with |𝐶𝑛𝑜𝑣𝑒𝑙 | = 3. CE: The cross entropy loss. CE
(T=2): Cross entropy with temperature 𝑇 = 2. L2: The mean square
error.

information from previous knowledge. In some instances, they
even slightly detract from the performance on the base classes
within the specified scenario. Therefore, our strategy focuses
solely on distilling knowledge from the classification logits.

Distillation Losses. To assess the impact of various loss
functions, we substitute the L2 norm loss in Eq. 4 with a
cross-entropy loss and a knowledge distillation loss (a cross-
entropy loss with temperature) [62]. According to Figure 5,
the L2 norm loss emerges as the more effective option for
class-incremental 3D object detection, suggesting that it better
facilitates the retention of previously learned knowledge.

G. Applicability to the Outdoor Dataset

The experimental results for the outdoor KITTI dataset are
shown in Table XI. Both SDCoT and SDCoT++ significantly
outperform the fine-tuning baseline, demonstrating the effec-
tiveness of our method in the outdoor scenario. SDCoT++,
outperforms SDCoT [27], achieving better performance across
the base, novel, and all categories. Specifically, SDCoT++
attains higher mAP on base classes and overall than SDCoT.
The improvement of SDCoT++ over SDCoT indicates the
applicability of mixed pseudo labels and probability calibration
even with a smaller number of base classes (3) and varied
class-wise object occurrences in the dataset, as detailed in
Table III of the supplementary material. However, there
remains a noticeable gap between the upper-bound performance
(joint training) and our methods, suggesting room for further
enhancement in adapting our approach to outdoor scenarios.

V. CONCLUSION

This research addresses the novel and practical challenge of
class-incremental 3D object detection. We introduced SDCoT++

TABLE XI: Batch incremental 3D object detection performance
mAP on the KITTI dataset val split.

Method Base Novel All
Base training 81.49 - -
Fine-tuning 5.49 25.75 13.60
SDCoT [27] 61.27 22.50 45.77
SDCoT++ 62.56 22.52 46.55
Joint training 80.55 32.74 61.43

that leverages static-dynamic co-teaching via enhancing pseudo
labels to incrementally learn new object classes without
revisiting past training data and validated the efficacy of our
SDCoT++ across various class-incremental 3D object detection
scenarios using the SUN RGB-D and ScanNet datasets. Our
SDCoT++ significantly mitigates the issue of catastrophic
forgetting and enhances the ability of the model to adapt to
new classes. Our findings aim to inspire further investigations
into this pertinent area.
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