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ABSTRACT

Point cloud semantic segmentation is fundamental for 3D scene un-
derstanding but requires costly dense annotations, limiting scalabil-
ity in real-world applications. Weakly supervised point cloud seman-
tic segmentation (WSPCSS) reduces labeling effort by using sparse
annotations, yet existing methods struggle to learn comprehensive
semantic representations under such constraints. In this paper, we
propose a novel framework that augments weak 3D supervision with
external cues from the 2D vision domain. Specifically, we leverage
the Segment Anything Model (SAM) in a multi-view setting, where
the point cloud is rendered into multiple 2D views, segmented by
SAM, and back-projected into 3D space. To resolve inconsisten-
cies across views, we introduce a hypergraph-based label propaga-
tion strategy that explicitly models high-order relationships between
3D points and 2D masks, enabling robust fusion of multi-view cues.
A confidence-based filtering mechanism further enhances pseudo-
label reliability. Extensive experiments on the S3DIS and ScanNet
V2 benchmarks demonstrate that our approach outperforms existing
weakly supervised methods, narrowing the gap to fully supervised
performance under extremely sparse labels. Our method establishes
a new paradigm for transferring 2D foundation model priors to 3D
tasks, providing a scalable solution for large-scale 3D segmentation
with minimal labeling cost.

Index Terms— 3D Point Cloud Segmentation, Weakly Super-
vised Learning, Segment Anything Model, Label Propagation.

1. INTRODUCTION

Point cloud semantic segmentation is a fundamental task in 3D vi-
sion, with applications in robotics, autonomous driving, and aug-
mented reality [1, 2]. Most existing methods rely on fully super-
vised learning with dense per-point annotations [3, 4, 5], which are
costly and labor-intensive, especially for large-scale scenes such as
indoor environments [6, 7, 8] or urban street views. To reduce an-
notation effort, weakly supervised point cloud semantic segmenta-
tion (WSPCSS) has emerged, using sparse or partial labels. Exist-
ing approaches mainly follow two strategies: (1) maximizing the
utility of limited labels via point-level regularization and constraints
[9, 10, 11, 12, 13]; and (2) leveraging unlabeled data through self-
supervised or contrastive learning [14, 15, 16, 17]. While effective,
these methods remain limited by weak supervision, often producing
representations that lack sufficient semantic richness for real-world
applications.

A natural question then arises: can we enrich 3D learning with
external cues beyond point-level annotations? In this work, we ex-
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plore the transfer of segmentation priors from the 2D vision domain
to enhance weakly supervised 3D segmentation. Specifically, we
leverage the Segment Anything Model (SAM) [18], a powerful foun-
dation model trained on billions of masks, which exhibits strong gen-
eralization across diverse image domains[19, 20]. Our key idea is to
harness SAM’s high-quality 2D masks as auxiliary cues for 3D point
clouds. To achieve this, we introduce a multi-view framework that
projects a 3D point cloud into multiple rendered images and applies
SAM to each view, generating diverse yet complementary segmen-
tation proposals.

However, directly fusing multi-view 2D masks into 3D space is
non-trivial. The masks from different views are not aligned in index
or semantics, making naı̈ve merging unreliable. To overcome this,
we formulate the problem as hypergraph label propagation, where
each 3D point is modeled as a vertex, and each 2D SAM mask serves
as a hyperedge connecting points with shared 2D segmentation con-
text. This hypergraph representation enables consistent propagation
of semantic information across views, ultimately yielding robust and
coherent 3D pseudo-labels. Our approach offers a new paradigm for
WSPCSS: injecting rich 2D segmentation priors into 3D learning
to compensate for limited supervision. Empirical results on chal-
lenging real-world datasets show that our method achieves signifi-
cant improvements over prior WSPCSS baselines. Moreover, abla-
tion studies confirm the effectiveness of both multi-view fusion and
SAM-derived pseudo-labels in guiding 3D semantic understanding.

The main contributions of this paper are summarized as follows:
• We propose a novel paradigm for WSPCSS that transfers rich

segmentation priors from the 2D Segment Anything Model
(SAM) to the 3D domain.

• We introduce a hypergraph-based label propagation frame-
work that effectively fuses multi-view SAM segmentations
into high-quality 3D pseudo-labels, enabling robust supervi-
sion under sparse annotations.

• Extensive experiments on large-scale real-world datasets
demonstrate that our method consistently outperforms state-
of-the-art weakly supervised baselines.

2. METHODOLOGY

2.1. Overview
To formally define the WSPCSS task, we follow the settings pro-
posed in [9]. In specific, a training dataset Dtr = {Xi, Yi,Mi}i=1···Ntr

is provided, where Xi ∈ RDi×N are the N input points each with
Di dimension feature, e.g. 3D coordinates with RGB color if
available, Yi ∈ {0, 1}K×N is the one-hot per-point segmentation
label (K categories) and Mi ∈ {0, 1}N is a binary mask indicat-
ing whether ground-truth label is available. An encoder network



Fig. 1: Overview of the proposed SAM-based 3D hypergraph label propagation method.

Z = f(X; Θ) maps input points into a Do dimension feature space,
Z ∈ RDo×N . A classifier h(Z; Ω) ∈ RK×N maps encoded features
into logits in segmentation category space.

Our goal is to enrich weak supervision with external 2D cues
to supplement the limited weak labels. As illustrated in Fig. 1, the
framework consists of four main steps: (1) Multi-View Projection:
render the point cloud into multiple RGB views using virtual cam-
eras; (2) SAM Segmentation: apply the Segment Anything Model
(SAM) to obtain dense 2D masks; (3) Back-Projection and Fu-
sion: map the 2D masks back to 3D points and fuse them using
hypergraph label propagation; (4) Pseudo-Label Training: filter
high-confidence predictions and use them as pseudo-labels to train a
standard 3D segmentation network.

2.2. Multi-View Projection

To obtain diverse 2D observations from a sparse 3D point cloud
X ∈ R3×N , we represent each point in homogeneous coordinates
as ph = (x, y, z, 1)⊤. The cloud is rendered from multiple virtual
cameras placed uniformly on a sphere centered at the point cloud
centroid to ensure broad coverage. Each camera is defined by in-
trinsic parameters K ∈ R3×3 (focal length and principal point) and
extrinsic parameters (R, t), where R ∈ SO(3) is the rotation matrix
and t ∈ R3 the translation vector. A 3D point p is projected onto
the image plane by

u = Pph, P = K [R | t] ∈ R3×4. (1)

where u = (u, v, w)⊤ are homogeneous image coordinates. The
final pixel location is obtained by perspective division (u/w, v/w).
The projection produces a set of rendered RGB images {Ii} for sub-
sequent SAM segmentation.

2.3. 2D Dense Segmentation by SAM

For each rendered image Ii, we apply the SAM in dense mode by
uniformly sampling point prompts across the image. Each prompt
generates one or more candidate masks {Sij}NSi

j=1 , resulting in dense
and potentially overlapping coverage of the scene. To lift these
masks back into 3D, we first obtain the depth d(u, v) for each pixel
(u, v) in the rendered image. Since the images are generated from
a known 3D point cloud, the depth at each pixel can be directly re-
trieved from the z-component of the corresponding 3D point in the
camera coordinate frame, i.e. d(u, v) = ([R|t]ph)z . Given the
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Fig. 2: Illustration of SAM-Guided Multi-View Fusion via Hyper-
graph Label Propagation.

pixel location (u, v) and depth d, the 3D coordinate p = (x, y, z)⊤

in the world frame is recovered by back-projection:

p = R⊤
(
d ·K−1 [u v 1

]⊤ − t
)
, (2)

2.4. Mask Merging via Hypergraph Label Propagation

Given multiple segmentation masks produced by SAM on different
rendered views, our goal is to fuse these heterogeneous cues into a
unified and consistent 3D label representation. This is challenging
because masks from different views are not aligned in index or se-
mantics, making direct merging unreliable. To address this, we for-
mulate the problem as a hypergraph-based label propagation task.
Hypergraph Construction: Let pk denote the k-th 3D point.
Across multiple views, pk may be associated with different 2D
masks {Sij}, but these associations vary by view and mask index.
We construct a hypergraph G = (V,E), where each vertex vk ∈ V
corresponds to a 3D point, and each hyperedge e ∈ E represents
a SAM-generated 2D mask that connects all 3D points projected
inside it.

The hypergraph is encoded by an incidence matrix H ∈
{0, 1}N×Ne , where N is the number of points and Ne the num-
ber of masks. Each entry is defined as

Hk,e =

{
1, if point k ∈ mask e,

0, otherwise.
(3)
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Fig. 3: Comparative results of several methods under different label
ratios on the S3DIS Area-5.

This representation naturally embeds multi-view segmentation cues
into a higher-order structure, allowing semantic information to prop-
agate across points that co-occur in the same SAM masks.
Label Propagation: Following [27], we define the degree of a hy-
peredge e as de =

∑
k Hk,e and the degree of a vertex k as dk =∑

e Hk,e, collected into diagonal matrices De = diag(de) and
Dv = diag(dk). The normalized affinity matrix is

S = D
− 1

2
v HD−1

e H⊤D
− 1

2
v . (4)

Let Y ∈ {0, 1}N×K be the initial label matrix, where labeled
points store one-hot ground-truth vectors and unlabeled points are
zero. The iterative propagation rule is

F(t+1) = αSF(t) + (1− α)Y, (5)

which converges to the closed-form solution:

F∞ = (1− α)(I− αS)−1Y, (6)

where F∞ ∈ RN×K contains the final propagated label distribu-
tions. Each row Fi represents the semantic confidence for point pi.

Fig. 2 illustrates the process using a window instance appearing
in two consecutive frames. Even if 2D SAM-generated masks in dif-
ferent views are independent, their 3D projections overlap, allowing
labels to propagate via shared hyperedges. Sparse annotations on
a single point can thus spread to overlapping points, which in turn
act as semantic bridges to transfer labels across frames. This staged
propagation ensures that multi-view 2D semantic cues are fused into
coherent 3D pseudo-labels.
Confidence-based Filtering: To improve pseudo-label reliability,
we assign a label only if the prediction is confident. For each point,
if the maximum probability exceeds a threshold δ, the correspond-
ing class is taken as its pseudo-label; otherwise, it is ignored during
training:

PseudoLabel(i) =

{
argmax(F∞

k ), if max(F∞
k ) ≥ δ,

−1, otherwise.
(7)

3. EXPERIMENTS

3.1. Datasets and Experimental Settings

We evaluate our method on two widely used indoor scene segmenta-
tion benchmarks: ScanNet V2 [7] and S3DIS [6]. ScanNet V2: This
dataset contains 20 semantic classes with 1,201 training scans, 312

validation scans, and 100 test scans. Following common practice,
we evaluate our method on the validation set. S3DIS: This dataset
consists of 272 rooms across six areas, with over 215 million points
annotated with XYZ coordinates, RGB colors, and 13 semantic cate-
gories. Following prior work [9, 28], we use Area 5 as the test set and
train on the remaining areas. For semantic enrichment, we render 46
images per room using Open3D: 36 horizontal views sampled every
10° and 10 vertical views sampled every 36°, ensuring diverse and
uniform coverage of the scene. In hypergraph label propagation, we
set α = 0.5 and adopt DGCNN [23] as the backbone segmentation
network for the S3DIS dataset, while for ScanNet V2 we adopt PTv2
[29] to better capture global context in large-scale indoor scenes. To
reduce memory usage while maintaining proportional coverage, we
uniformly downsample points per room: 8,000 points for rooms with
fewer than 100,000 points, and 15,000 points otherwise.

3.2. Results on Weakly Supervised Segmentation

S3DIS: Tab. 1 summarizes quantitative results on S3DIS Area 5
across different supervision levels. Our approach outperforms most
existing weakly supervised methods under all label budgets. In
particular, with 10% labeled points, our method achieves 49.9%
mIoU, surpassing all compared approaches, including those trained
with 100% supervision. These results demonstrate that our frame-
work serves as a powerful plug-in for segmentation networks such
as DGCNN, delivering significant performance improvements with
minimal labeling costs, and showing clear advantages, especially
in highly sparse annotation scenarios. As shown in Fig. 3, our
method surpasses all competing approaches under the highly con-
strained 1-pt supervision setting (one labelled point per category),
and demonstrates a steady performance gain as the annotation ra-
tio increases. Notably, with just 10% labeled data, our method
approaches the fully supervised upper bound.
ScanNet V2: To further assess generalizability, we evaluate on
ScanNet V2 under two challenging weak-label settings: 0.1% la-
beled points and 20 points per scene (20 pts) [13], as shown in Tab. 2.
Despite the extreme sparsity, our method consistently outperforms
prior state-of-the-art approaches. With only 20 points per scene, it
surpasses CPCM by 2.6% mIoU, while under the 0.1% label setting,
it achieves a 4.0% improvement. Remarkably, our approach even
exceeds baselines trained with 1% labels, highlighting its robust-
ness under severe label scarcity and its strong potential for practical
deployment in scenarios with highly limited annotation budgets.

3.3. Ablation Study

As shown in Tab. 3, the baseline without any component achieves
40.1% mIoU. When we rely solely on the superpoints of [8] as
geometric hyperedges (i.e., unsupervised segmentation of a point
cloud into geometrically homogeneous clusters), the performance
drops sharply to 31.4%, suggesting that such geometric grouping
alone is ineffective under extremely sparse supervision (1pt). Re-
placing them with SAM-based hyperedges, constructed from masks
rendered over 46 multi-view images, recovers the performance to
39.5%, highlighting the advantage of high-quality 2D segmentation
priors for label propagation. When both geometric and SAM-based
hyperedges are used, the mIoU rises to 41.4%, indicating that ge-
ometric consistency from 3D and texture-aware cues from 2D are
complementary. Moreover, introducing confidence filtering and en-
hanced rendering strategies yields a substantial improvement, with
the performance jumping from 41.4% to 47.5% (36 views) and
further to 47.9% (46 views). This shows that confidence filtering
is crucial for suppressing noisy pseudo-labels, while incorporating



Table 1: Comparison with different methods on the S3DIS Area-5.∗ denotes results based on our reimplementation.

Setting Model ceil. floor wall beam col. win. door chair table book. sofa board clutter Avg.
Fu

l.
Su

p.
PointNet [3] 88.8 97.3 69.8 0.1 3.9 46.3 10.8 52.6 58.9 40.3 5.9 26.4 33.2 41.1
PointNet++ [21] 90.3 95.6 69.3 0.1 13.8 26.7 44.1 64.3 70.0 27.8 47.8 30.8 38.1 47.8
SegCloud [22] 90.1 96.1 69.9 0.0 18.4 38.4 23.1 75.9 70.4 58.4 40.9 13.0 41.6 48.9
DGCNN∗[23] 92.2 97.6 74.5 0.0 8.3 49.5 27.1 72.8 69.2 51.8 24.6 34.4 41.3 49.5

U
ns

up
. Kmeans 59.8 63.3 34.9 21.5 24.6 34.2 29.3 35.7 33.1 45.0 45.6 41.7 30.4 38.4

Ncut [24] 63.5 63.8 37.2 23.4 24.6 35.5 29.9 38.9 34.3 47.1 46.3 44.1 31.5 40.0

W
ea

k
Su

p.

1pt

Π Model [25] 89.1 97.0 71.5 0.0 3.6 43.2 27.4 62.1 63.1 14.7 43.7 24.0 36.7 44.3
MT [26] 88.9 96.8 70.1 0.1 3.0 44.3 28.8 63.6 63.7 15.5 43.7 23.0 35.8 44.4
WeakSup [9] 90.1 97.1 71.9 0.0 1.9 47.2 29.3 62.9 64.0 15.9 42.2 18.9 37.5 44.5
OTOC [16] 89.0 96.6 69.0 0.2 7.6 43.6 34.4 59.4 59.7 16.1 43.2 36.9 37.1 45.6
MulPro [12] 90.1 96.3 71.8 0.0 6.7 46.7 39.2 67.2 67.4 21.8 39.2 33.0 38.0 47.5
Ours 89.2 95.5 74.7 0.0 6.9 51.0 35.7 60.3 60.3 54.0 17.8 38.8 38.4 47.9

10%

Π Model [25] 91.8 97.1 73.8 0.0 5.1 42.0 19.6 66.7 67.2 19.1 47.9 30.6 41.3 46.3
MT [26] 92.2 96.8 74.1 0.0 10.4 46.2 17.7 67.0 70.7 24.4 50.2 30.7 42.2 47.9
WeakSup [9] 90.9 97.3 74.8 0.0 8.4 49.3 27.3 69.0 71.7 16.5 53.2 23.3 42.8 48.0
OTOC [16] 91.2 97.7 78.0 0.0 6.3 46.3 31.6 65.7 64.4 8.2 52.5 41.6 43.1 48.2
MulPro [12] 89.7 96.9 75.5 0.0 14.0 45.7 40.7 68.5 66.8 13.9 49.4 34.4 41.2 49.0
Ours 85.3 94.1 71.7 0.0 17.7 51.9 38.4 67.1 65.4 49.1 23.0 47.0 38.4 49.9

Fig. 4: Qualitative results of our method vs. DGCNN baseline (1pt) on the S3DIS dataset.

Table 2: Comparisons with state-of-the-art methods on ScanNet-v2
val. set.

Method Setting mIoU

DGCNN [23]
Fully

48.4
MinkNet [30] 72.9
PTv2 [29] 75.4

HybridCR [31] 1% 56.9

SQN [10]
0.1%

58.4
CPCM [13] 63.8
Ours 67.8

WYPR [32]

20 points/scene

51.5
CSC LA SEM [33] 53.1
PointContrast LA SEM [34] 55.0
MIL [11] 57.8
OTOC [16] 59.4
VIBUS [35] 58.6
CPCM [13] 62.7
Ours 65.3

more views continues to provide additional complementary cues
that further refine the segmentation results.

Fig. 4 presents the qualitative results of our method on the S3DIS
dataset, where the first six columns from left to right correspond to
visualizations of different ablation settings. Under extremely lim-
ited supervision (1pt supervision), fully supervised methods such as
DGCNN struggle to produce reasonable semantic structures, lead-
ing to fragmented predictions and confusion between semantic cat-
egories in some regions. In contrast, under the same supervision
setting, our method yields more coherent segmentation results with
clearer object boundaries. As the number of labeled points increases
(e.g., 10% supervision), the overall segmentation quality is further

Table 3: Ablation study conducted on S3DIS Area-5, where the an-
notation cost is 1pt.

#Views Geometric Hyperedges SAM-based Hyperedges Confidence Filtering mIoU (%)

- 40.1
- ✓ 31.4
46 ✓ 39.5
46 ✓ ✓ 41.4
36 ✓ ✓ ✓ 47.5
46 ✓ ✓ ✓ 47.9

improved. And the ablation visualizations demonstrate that jointly
incorporating geometric hyperedges and SAM-based hyperedges en-
hances region consistency, while confidence filtering effectively sup-
presses the propagation of noisy pseudo-labels, which is consistent
with the quantitative results reported in Table 3. Furthermore, keep-
ing other settings constant, increasing the number of views leads to
qualitatively more coherent segmentation, while the corresponding
quantitative gains are relatively minor.

4. CONCLUSION

We propose a weakly supervised 3D point cloud segmentation
framework that exploits multi-view 2D cues and SAM-based dense
masks. By modeling mask fusion as hypergraph label propaga-
tion, our method produces reliable pseudo-labels that effectively
complement sparse supervision and guide 3D learning. Extensive
experiments on S3DIS and ScanNet V2 demonstrate consistent
improvements over existing methods. This work highlights the po-
tential of transferring 2D foundation model priors to scalable 3D
weak supervision, and future efforts will explore tighter end-to-end
2D–3D integration and extensions to instance-level and scene-level
3D understanding tasks
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